Skip to main content
Log in

Localized algal blooms induced by river inflows in a canyon type reservoir

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The local response of the phytoplankton community to river inflow processes was investigated with modeling and field analyses in a long and narrow, stratified reservoir in mid-summer. The river water had high concentrations of phosphorus and nitrogen (ammonium and nitrate) and temperature had large variations at diurnal scales. As a consequence of the large variation in river temperature, the level of neutral buoyancy (the depth where the river water spreads laterally in the reservoir) oscillated between the surface (overflows) during the day, and the depth of the metalimnion (interflows) during the night. The reservoir remained strongly stratified, which favoured the presence of cyanobacteria. It is shown that under these conditions, nutrient-rich river water injected during overflows into the surface layers promoted the occurrence of localized algal blooms in the zones where the overflow mixed with the quiescent water of the reservoir. A series of hydrodynamic simulations of the reservoir were conducted both with synthetic and realistic forcing to assess the importance of river temperatures and wind-driven hydrodynamics for algal blooms. The simulations confirmed that the river inflow was the main forcing mechanism generating the localized bloom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahlfeld D, Joaquin A, Tobiason J, Mas D (2003) Case study: impact of reservoir stratification on interflow travel time. J Hydraul Eng 129:966–975

    Article  Google Scholar 

  • Armengol J, Garcia JC, Comerma M, Romero M, Dolz J, Roura M, Han BH, Vidal A, Simek K (1999) Longitudinal processes in Canyon type reservoir: the case of Sau (N.E. Spain). In: Tundisi JG, Straskraba M (eds) Theoretical reservoir ecology and its applications. Backhuys Publishers, Leiden, pp 313–345

    Google Scholar 

  • Barquero EJ (2001) Design, construction and assessment of automatic analyzers for environmental monitoring. PhD Dissertation, Universitat Autònoma de Barcelona, Spain (in Catalan)

  • Borrego CM, García-Gil LJ (1994) Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC. Photosynth Res 41:157–163

    Article  CAS  Google Scholar 

  • Bournet PE, Dartus D, Tassin B, Vincon-Leite B (1999) Numerical investigation of plunging density current. J Hydr Eng-ASCE 125:584–594

    Article  Google Scholar 

  • Britter RE, Linden PF (1980) The motion of the front of a gravity current travelling down an incline. J Fluid Mech 99:531–543

    Article  Google Scholar 

  • Carmack EC (1979) Combined influence of inflow on lake temperatures on spring circulation in a riverine lake. J Phys Oceanogr 9:422–434

    Article  Google Scholar 

  • Carmack EC, Wiegand RC, Daley RJ, Gray CBJ, Jasper S, Pharo CH (1986) Mechanisms influencing the circulation and distribution of water mass in a medium residence-time lake Limnol. Oceanogr. 31:249–265

    Google Scholar 

  • Chan TU, Hamilton DP, Robson BJ (2003) Modelling phytoplankton succession and biomass in a seasonal West Australian estuary. Verh Int Verein Limnol 28:1086–1088

    Google Scholar 

  • Chung S, Gu R (1998) Two-dimensional simulations of contaminant currents in a stratified reservoir. J Hydr Eng-ASCE 124:704–711

    Article  Google Scholar 

  • Dallimore C, Imberger J, Ishikawa T (2001) Entrainment and turbulence in a saline underflow in Lake Ogawara. J Hydr Eng-ASCE 127:937–948

    Article  Google Scholar 

  • Dallimore CJ, Hodges BR, Imberger J (2003) Coupling an underflow model to a three-dimensional hydrodynamic model. J Hydr Eng-ASCE 129:748–757

    Article  Google Scholar 

  • Dallimore CJ, Imberger J, Hodges BR (2004) Modeling a plunging underflow. J Hydr Eng-ASCE 130:1068–1076

    Article  Google Scholar 

  • Ellison TH, Turner JS (1959) Turbulent entrainment in stratified flows. J Fluid Mech 6:423–448

    Article  Google Scholar 

  • Fernandez RL, Imberger J (2008) Time-varying underflow into a continuous stratification with bottom slope. J Hydr Eng-ASCE 134:1191–1198

    Article  Google Scholar 

  • Finger D, Schmid M, Wüest A (2006) Effects of upstream hydropower operation on riverine particle transport and turbidity in downstream lakes. Water Resour Res 42:W08429. doi:10.1029/2005WR004751

  • Fischer HB, Smith RD (1983) Observations of transports to surface waters from a plunging inflow to Lake Mead. Limnol Oceanogr 28:258–272

    Article  Google Scholar 

  • Fischer HB, List EJ, Koh RCY, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Academic Press, New York, p 483

    Google Scholar 

  • Fleenor WE, Schladow SG (2000) Mixing in the plunge zone of lake inflows. In: Proceedings of the Fifth International Symposium on Stratified Flows. Vancouver, BC

  • Gippel CJ (1989) The use of turbidimeters in suspended sediment research. Hydrobiologia 176:465–480. doi:10.1007/BF00026582

    Article  Google Scholar 

  • Gippel CJ (1995) Potential of turbidity monitoring for measuring the transport of suspended-solids in streams. Hydrol Processes 9:83–97. doi:10.1002/hyp.3360090108

    Article  Google Scholar 

  • Gómez-Giraldo A, Imberger J, Antenucci JP (2006) Spatial structure of the dominant basin-scale internal waves in Lake Kinneret. Limnol Oceanogr 51:229–246

    Article  Google Scholar 

  • Grasshoff K, Erhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, Weinheim

    Google Scholar 

  • Guerrero R, Montesinos E, Pedrós-Alió C, Esteve I, Mas J, Van Gemerden H, Hofman PA, Baker JF (1985) Phototrophic sulphur bacteria in two Spanish lakes: vertical distribution and limiting factors. Limnol Oceanogr 30:919–931

    Article  CAS  Google Scholar 

  • Hallworth M, Huppert H, Phillips J, Sparks S (1996) Entrainment into two-dimensional and axisymmetric turbulent gravity currents. J Fluid Mech 308:289–311

    Article  CAS  Google Scholar 

  • Hauenstein W, Dracos TH (1984) Investigation of plunging density currents generated by inflows in lakes. J Hydraul Res 22:157–179

    Article  Google Scholar 

  • Hebbert B, Imberger J, Loh I, Patterson J (1979) Collie River underflow into the Wellington Reservoir. J Hydraul Div-ASCE 105:533–545

    Google Scholar 

  • Hillmer I, Imberger J (2007) Influence of advection on scales of ecological studies in a coastal equilibrium flow. Cont Shelf Res 27:134–153

    Article  Google Scholar 

  • Hipsey MR, Antenucci JP, Brookes JD, Burch MD, Regel RH, Linden L (2004) A three dimensional model of Cryptosporidium dynamics in lakes and reservoirs: a new tool for risk management. Intl J River Basin Manag 2:1–17

    Google Scholar 

  • Hodges BR (2000) Numerical techniques in CWR-ELCOM. Technical report, Centre for Water Research, University of Western Australia, Nedlands, Western Australia, 6907. Reference WP 1422-BH

  • Hodges BR, Imberger J (2001) Simple curvilinear method for numerical methods of open channels. J Hydr Eng-ASCE 127:949–958

    Article  Google Scholar 

  • Hodges BR, Imberger J, Saggio A, Winters KB (2000) Modeling basin-scale internal waves in a stratified lake. Limnol Oceanogr 45:1603–1620

    Article  Google Scholar 

  • Hoyer AB, Moreno-Ostos E, Vidal J, Blanco JM, Palomino-Torres RL, Basanta A, Escot C, Rueda FJ (2009) The influence of external perturbations on the functional composition of phytoplankton in a Mediterranean reservoir. Hydrobiologia 636:49–64

    Article  Google Scholar 

  • Jain SC (1981) Plunging phenomena in reservoirs, In: Stefan HG (ed), Proceedings of the Symposium on Surface Water Impoundments. ASCE, New York, pp 1249–1257

  • Jin K-R, Hamrick JH, Tisdale T (2000) Application of three-dimensional hydrodynamic model for Lake Okeechobee. J Hydr Eng-ASCE 126:758–771

    Article  Google Scholar 

  • Kassem A, Imran J, Khan JA (2003) Three-dimensional modeling of negatively buoyant flow in diverging channels. J Hydr Eng-ASCE 129:936–947

    Article  Google Scholar 

  • Kennedy RH (1999) Reservoir design and operation: limnological implications and management opportunities. In: Tundisi JG, Straskraba M, Straskraba M (eds) Theoretical reservoir ecology and its applications. Backhuys Publishers, Leiden, pp 1–28

    Google Scholar 

  • Kimmel BL, Lind OT, Paulson LJ (1990) Reservoir primary production. In: Thornton KW, Kimmel BL, Payne FE (eds) Reservoir limnology ecological perspectives. Wiley, NY, pp 133–193

    Google Scholar 

  • Laval B, Imberger J, Hodges B, Stoker R (2003) Modeling circulation in lakes: spatial and temporal variations. Limnol Oceanogr 48:983–994

    Article  Google Scholar 

  • Marcé R, Comerma M, Garcia JC, Armengol J (2004) A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact. Limnol Oceanogr Meth 2:342–355

    Article  Google Scholar 

  • Marcé R, Moreno-Ostos E, Armengol J (2008) The role of river inputs on the hypolimnetic chemistry of a productive reservoir: implications for management of anoxia and total phosphorus internal loading. Lake Reserv Manag 24:87–98

    Article  Google Scholar 

  • Morillo S, Imberger J, Antenucci J, Woods PF (2008) Influence of wind and lake morphometry on the interaction between two rivers entering a stratified lake. J Hydr Eng ASCE 134:1579–1589

    Article  Google Scholar 

  • Murphy I, Riley JP (1962) A modified single-solution method for determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nedoma J, Garcia JC, Comerma M, Simek K, Armengol J (2006) Extracellular phosphatases in a Mediterranean reservoir: seasonal, spatial and kinetic heterogeneity. Freshwat Biol 51:1264–1276

    Article  CAS  Google Scholar 

  • Ordóñez J (2010) Limnología del embalse de Sau. Relaciones del zooplacton, la clorofila y los sólidos en suspensión con el clima lumínico del agua. PhD Dissertation, Universitat Autònoma de Barcelona, Spain (in Spanish)

  • Pickrill RA, Irwin J (1982) Predominant headwater inflow and its control of lake-river interaction in Lake Wakatipu. New Zeal J Mar Fresh 16:201–213

    Article  Google Scholar 

  • Ramon M (2003) Development of an automatic analyzer for phosphate ion in surface waters. PhD Dissertation, Universitat Autònoma de Barcelona, Spain (in Catalan)

  • Reynolds CS (2001) Emergence in pelagic communities. Sci Mar 65:5–30

    Article  Google Scholar 

  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, De Melo S (2002) Towards a functional classification of the freshwater phytoplankton. Rev J Plankton Res 24:417–428

    Article  Google Scholar 

  • Robson BJ, Hamilton DP (2004) Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary, Western Australia. Ecol Model 174:203–222

    Article  CAS  Google Scholar 

  • Romero JR, Antenucci JP, Imberger J (2004) One- and three-dimensional biogeochemical simulations of two differing reservoirs. Ecol Model 174:143–160

    Article  CAS  Google Scholar 

  • Savage SB, Brimberg J (1975) Analysis of plunging phenomena in water reservoirs. J Hydraul Res 13:187–204

    Article  Google Scholar 

  • Serra T, Vidal J, Colomer J, Casamitjana X, Soler M (2007) The role of surface vertical mixing in phytoplankton distribution in a stratified reservoir. Limnol Oceanogr 52:620–634

    Article  Google Scholar 

  • Serra T, Borrego C, Quintana X, Calderer L, López R, Colomer J (2009) Quantification of the effect of nonphotochemical quenching on the determination of in vivo Chl a from phytoplankton along the water column of a freshwater reservoir. Photochem Photobiol 85:321–331

    Article  PubMed  CAS  Google Scholar 

  • Simek K, Comerma M, Garcia JC, Nedoma J, Marcé R, Armengol J (2011) The effect of river water circulation on the distribution and functioning of reservoir microbial communities as determined by a relative distance approach. Ecosystems 14:1–14

    Article  CAS  Google Scholar 

  • Spillman CM, Imberger J, Hamilton D, Hypsey M, Romer J (2007) Modelling the effects of Po River discharge, internal nutrient cycling and hydrodynamics on biogeochemistry of the Northern Adriatic Sea. J Mar Syst 68:167–200

    Article  Google Scholar 

  • Stevens C, Hamblin PF, Lawrence GA, Boyce FM (1995) River-induced transport in Kootenay lake. J Environ Eng 121:830–837

    Article  CAS  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen der Internationalen Vereinigung fu¨r Limnologie 9:1–38

  • Vidal J, Casamitjana X (2008) Forced resonant oscillations as response to periodic winds in a stratified reservoir. J Hydr Eng 134:416–425

    Article  Google Scholar 

  • Vidal J, Casamitjana X, Colomer J, Serra T (2005) The internal wave field in Sau Reservoir: observation and modeling of a third vertical mode. Limnol Oceanogr 50:1326–1333

    Article  Google Scholar 

  • Vidal J, Moreno-Ostos E, Escot C, Quesada R, Rueda F (2010) The effects of diel changes in circulation and mixing on the longitudinal distribution of phytoplankton in a canyon-shaped Mediterranean reservoir. Freshwat Biol 55:1945–1957

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to the Centre for Water Research (CWR, University of Western Australia) and its director, Jörg Imberger, for making the Estuary and Lake Computer Model (ELCOM) available for use in this project. This work has been financially supported in part by both MICINN and the Fulbright Program through Grant #2008-0909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, J., Marcé, R., Serra, T. et al. Localized algal blooms induced by river inflows in a canyon type reservoir. Aquat Sci 74, 315–327 (2012). https://doi.org/10.1007/s00027-011-0223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-011-0223-6

Keywords

Navigation