Skip to main content

Advertisement

Log in

Variation in transparent exopolymer particles in relation to biological and chemical factors in two contrasting lake districts

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

In inland waters, transparent exopolymer particles (TEP) can affect carbon export and sequestration in sediments with consequences for lake C budgets. We measured TEP concentration in 32 lakes from two contrasting lake districts covering wide ranges in biological and chemical characteristics. North temperate lakes, located in a wet region, have low to moderate ionic strength and low to high dissolved organic carbon with corresponding variation in color (light absorbance). Mediterranean lakes located in a semiarid region were characterized by high ionic strength and high concentrations of dissolved organic carbon but low color. TEP concentrations were large relative to the living portion of the particulate organic carbon pool in both Mediterranean (36%) and north temperate (33%) lakes. TEP concentrations ranged from 36 to 1,462 μg [as Gum Xanthan equivalents (GX eq)] L−1 in north temperate lakes. In the Mediterranean lakes, concentrations were higher that previously reported for other systems and ranged from 66 to 9,038 μg GX eq L−1. TEP concentration was positive and significantly related to chlorophyll a (chl a) in north temperate lakes and in the entire data set. Although a significant and positive relationship between TEP and chl a was also detected in the Mediterranean lakes, bacterial abundance was most strongly related to TEP. In contrast with the positive influence of phytoplankton and bacteria on TEP, there were weaker relationships between TEP and the chemical variables tested. We observed a significant and positive relationship between pH and TEP (for all lakes) but this relationship was indirectly driven by a co-variation of pH with phytoplankton biomass based on multiple regression analysis. For the Mediterranean lakes, the negative (but not significant) trends between TEP and both conductivity and divalent cations suggest thresholds above which TEP will likely be destabilized. Under these conditions, TEP may flocculate or disperse in the water column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nature 5:782–791

    CAS  Google Scholar 

  • Banse K (1977) Determining the carbon to chlorophyll a of natural phytoplankton. Mar Biol 41:199–212

    Article  CAS  Google Scholar 

  • Bar-Zeev E, Berman-Frank I, Stambler N, Vázquez Domínguez E, Zohary T, Capuzzo E, Meeder E, Suggett DJ, Iluz D, Dishon G, Berman T (2009) Transparent exopolymer particles (TEP) link phytoplankton and bacterial production in the Gulf of Aqaba. Aquat Microb Ecol 56:217–225

    Article  Google Scholar 

  • Berman T, Viner-Mozzini Y (2001) Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret. Aquat Microb Ecol 24:255–264

    Article  Google Scholar 

  • Bhaskar PV, Bhosle NB (2008) Bacterial production, glucosidase activity and particle-associated carbohydrates in Dona Paula Bay (West coast of India. Estuar Coast Shelf Sci 80:413–424

    Article  Google Scholar 

  • Chin WC, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:568–572

    Article  CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  CAS  Google Scholar 

  • Corzo A, Rodríguez-Gálvez S, Lubian L, Sangrá P, Martínez A, Morillo JA (2005) Spatial distribution of transparent exopolymer particles in the Bransfield Strait, Antarctica. J Plankton Res 27(7):635–646

    Article  CAS  Google Scholar 

  • Cuthbert ID, Del Giorgio PA (1992) Toward a standard method of measuring color in fresh-water. Limnol Oceanogr 37:1319–1326

    Article  CAS  Google Scholar 

  • De Vicente I, Ortega-Retuerta E, Romera O, Morales-Baquero R, Reche I (2009) Contribution of transparent exopolymer particles to carbon sinking flux in an oligotrophic reservoir. Biogeochemistry 96:13–23

    Article  CAS  Google Scholar 

  • Ding Y-X, Chin W-Ch, Rodriguez A, Hung Ch-Ch, Santschi PH, Verdugo P (2008) Amphiphilic exopolymers from Sagittula stellata induce DOM self-assembly and formation of marine microgels. Mar Chem 112:11–19

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1984) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Droppo I, Ongley ED (1994) Flocculation of suspended sediment in rivers of southeastern Canada. Water Res 28:1799–1809

    Article  CAS  Google Scholar 

  • Engel A (2004) Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep Sea Res I 51:83–92

    Article  CAS  Google Scholar 

  • Engel A, Passow U (2001) Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their alcian blue adsorption. Mar Ecol Prog Ser 219:1–10

    Article  CAS  Google Scholar 

  • Fletcher M (1991) The physiological activity of bacteria attached to solid surfaces. Adv Microb Physiol 32:53–85

    Article  CAS  PubMed  Google Scholar 

  • Grossart HP, Simon M (1993) Limnetic macroscopic organic aggregates (lake snow): occurrence, characteristics and microbial dynamics in Lake Constance. Limnol Oceanogr 38:532–546

    Article  Google Scholar 

  • Grossart HP, Simon M (1998) Significance of limnetic organic aggregates (lake snow) for the sinking flux of particulate organic matter in a large lake. Aquat Microb Ecol 15:115–125

    Article  Google Scholar 

  • Grossart HP, Simon M, Logan BE (1997) Formation of macroscopic organic aggregates (lake snow) in a large lake: the significance of transparent exopoly-saccharide particles (TEP), phyto-, and zooplankton. Limnol Oceanogr 42:1651–1659

    Article  CAS  Google Scholar 

  • Grossart HP, Berman T, Simon M, Pohlmann K (1998) Occurrence and microbial dynamics of macroscopic organic aggregates (lake snow in Lake Kinneret, Israel, in fall. Aquat Microb Ecol 14:59–67

    Article  Google Scholar 

  • Grossart HP, Czub G, Simon M (2006) Algae-bacteria interactions and their effects on aggregation and organic matter flux in the sea. Environ Microb 8:1074–1084

    Article  Google Scholar 

  • Hanisch K, Schweitzer B, Simon M (1996) Use of dissolved carbohydrates by planktonic bacteria in a mesotrophic lake. Microb Ecol 31:41–55

    Article  CAS  Google Scholar 

  • Hayakawa K (2004) Seasonal variations and dynamics of dissolved carbohydrates in Lake Biwa. Org Geochem 35:169–179

    Article  CAS  Google Scholar 

  • Heissenberger A, Leppard GG, Herndl GJ (1996) Relationship between the intracellular integrity and the morphology of the capsular envelope in attached and free living marine bacteria. Appl Environ Microbiol 62:4521–4528

    CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol 167:191–194

    CAS  Google Scholar 

  • Jørgensen NOG (2009) Carbohydrates. Encyclopedia of Inland waters. In: Likens GE (ed). Academic Press, United States

  • Kepkay PE (1994) Particle aggregation and the biological reactivity of colloids. Mar Ecol Prog Ser 109:293–304

    Article  Google Scholar 

  • Kiørboe T, Hansen JLS (1993) Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material. J Plankton Res 15:993–1018

    Article  Google Scholar 

  • Liang L, Morgan JJ (1990) Chemical aspects of iron oxide coagulation in water: laboratory studies and implications for natural systems. Aquat Sci 52:33–55

    Article  Google Scholar 

  • Lick W, Lick J, Ziegler CK (1992) Flocculation and its effect on the vertical transport of fine-grained sediments. Hydrobiology 235(236):1–16

    Article  Google Scholar 

  • Loferer-Krossbacher M, Klima J, Psenner R (1998) Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microbiol 64:688–694

    CAS  PubMed  Google Scholar 

  • Logan BE, Passow U, Alldredge AL, Grossart HP, Simont M (1995) Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep Sea Res 42:203–214

    Article  Google Scholar 

  • Maranger R, Pullin MJ (2002) Elemental complexation by dissolved organic matter in lakes: implications for Fe speciation and the bioavailability of Fe and P. In: Findlay S, Sinsabaugh R (eds), Aquatic ecosystems: interactivity of dissolved organic matter. Elsevier, Amsterdam

  • Mopper K, Zhou J, Ramana KS, Passow U, Dam HG, Drapeau DG (1995) The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep Sea Res 2 42(1):47–73

    Article  CAS  Google Scholar 

  • Mulholland PJ (1981) Formation of particulate organic carbon in water from a southeastern stream. Limnol Oceanogr 26:790–795

    Article  CAS  Google Scholar 

  • Myklestad SM, Skanoy E, Hestmann S (1997) A sensitive and rapid method for analysis of dissolved mono-and polysaccharides in seawater. Mar Chem 56(3–4):279–286

    Article  CAS  Google Scholar 

  • Ortega-Retuerta E, Pulido-Villena E, Reche I (2007) Effects of dissolved organic matter photoproducts and mineral nutrient supply on bacterial growth in Mediterranean inland waters. Microb Ecol 54:161–169

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Retuerta E, Reche I, Pulido-Villena E, Agustí S, Duarte CM (2009a) Uncoupled distributions of transparent exopolymer particles (TEP) and dissolved carbohydrates in the Southern Ocean. Mar Chem 115:59–65

    Article  CAS  Google Scholar 

  • Ortega-Retuerta E, Passow U, Duarte CM, Reche I (2009b) Effects of ultraviolet B radiation on (not so) transparent exopolymer particles. Biogeosciences 6:3071–3080

    Article  CAS  Google Scholar 

  • Ortega-Retuerta E, Duarte CM, Reche I (2010) Significance of bacterial activity for the distribution and dynamics of transparent exopolymer particles in the Mediterranean Sea. Microb Ecol. doi:10.1007/s00248-010-9640-7

  • Pace ML, Cole JJ (2002) Synchronous variation of dissolved organic carbon and color in lakes. Limnol Oceanogr 47:333–342

    Article  CAS  Google Scholar 

  • Pakulski D, Benner R (1994) Abundance and distribution of carbohydrates in the ocean. Limnol Oceanogr 39:930–940

    Article  CAS  Google Scholar 

  • Passow U (2000) Formation of transparent exopolimer particles, TEP, from dissolved precursor material. Mar Ecol Prog Ser 192:1–11

    Article  CAS  Google Scholar 

  • Passow U (2002a) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333

    Article  Google Scholar 

  • Passow U (2002b) Production of TEP by phytoplankton and bacteria. J Phycol 236:1–12

    Google Scholar 

  • Passow U, Alldredge AL (1994) Distribution, size and bacterial colonization of transparent exopolymer particles (TEP) in the ocean. Mar Ecol Prog Ser 113:185–198

    Article  Google Scholar 

  • Passow U, Alldredge AL (1995) A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol Oceanogr 40:1326–1335

    Article  CAS  Google Scholar 

  • Passow U, Shipe RF, Murray A, Pak DK, Brzezinski MA, Alldredge AL (2001) The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont Shelf Res 21:327–346

    Article  Google Scholar 

  • Porter KG, Feig LS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Pulido-Villena E, Reche I (2003) Exploring bacterioplankton growth and protein synthesis to determine conversion factors across a gradient of dissolved organic matter. Microb Ecol 46:33–42

    Article  CAS  PubMed  Google Scholar 

  • Radic T, Ivancic I, Fuks D, Radic J (2006) Marine bacterioplankton production of polysaccharidic and proteinaceous particles under different nutrient regimes. FEMS Microbiol Ecol 58:333–342

    Article  CAS  PubMed  Google Scholar 

  • Reche I, Pace ML, Cole JJ (1999) Relationship of trophic and chemical conditions to photobleaching of dissolved organic matter in lake ecosystems. Biogeochemistry 44:259–280

    Google Scholar 

  • Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Article  Google Scholar 

  • StatSoft Inc (1997) Statistica for Windows (computer program manual). Tulsa, Oklahoma, USA

    Google Scholar 

  • Tipping E, Woof C (1983) Elevated concentrations of humic substances in a seasonally anoxic hypolimnion: evidence for co-accumulation with iron. Arch Hydrobiol 98:137–145

    Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2010) Lakes and impoundments as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Google Scholar 

  • Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85

    Article  CAS  Google Scholar 

  • Von Wachenfeldt E, Tranvik LJ (2008) Sedimentation in boreal lakes—the role of flocculation of allochthonous dissolved organic matter in the water column. Ecosystems 11:803–814

    Article  CAS  Google Scholar 

  • Von Wachenfeldt E, Sobek S, Bastviken D, Tranvik LJ (2008) Linking allochthonous dissolved organic matter and boreal lake sediment carbon sequestration: the role of light-mediated flocculation. Limnol Oceanogr 53:2416–2426

    Google Scholar 

  • Von Wachenfeldt E, Bastviken D, Tranvik LJ (2009) Microbially induced flocculation of allochthonous dissolved organic carbon in lakes. Limnol Oceanogr 54:1811–1818

    Google Scholar 

  • Worm J, Søndergaard M (1998) Alcian blue-stained particles in a eutrophic lake. J Plankton Res 20:179–186

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Science and Technology (DISPAR, CGL2005-00076 to IR) and the National Science Foundation, USA (DEB0716869, DEB0715054). We thank U. Passow and Y. Z. Yacobi for providing data of TEP for different marine and freshwater systems and to A. Valderrama, J. Coloso, and N. Preston for help with field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Reche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vicente, I., Ortega-Retuerta, E., Mazuecos, I.P. et al. Variation in transparent exopolymer particles in relation to biological and chemical factors in two contrasting lake districts. Aquat. Sci. 72, 443–453 (2010). https://doi.org/10.1007/s00027-010-0147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-010-0147-6

Keywords

Navigation