Skip to main content

Advertisement

Log in

Methane dynamics in a large river: a case study of the Elbe River

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

We conducted multiple small (2011–2012) and one large sampling campaign (2013) at selected profiles along the Elbe River. With the data we were able to outline spatial and temporal variability of methane concentration, oxidation and emissions in one of the major rivers of Central Europe. The highest methane concentrations were found in human-altered riverine habitats, i.e., in a harbor (1,888 nmol L−1), in a lock and weirs (1409 ± 1545 nmol L−1), and in general in the whole “impounded” river segment (383 ± 215 nmol L−1). On the other hand, the lowest methane concentrations were found in the “lowland” river segment (86 ± 56 nmol L−1). The methane oxidation rate was more efficient in the “natural” segment (71 ± 113 nmol L−1day−1, which means a turnover time of 49 ± 83 day−1) than in the “lowland” segment (4 ± 3 nmol L−1day−1, which means a turnover time of 39 ± 45 day−1). Methane emissions from the surface water into the atmosphere ranged from 0.4 to 11.9 mg m−2 day−1 (mean 2.1 ± 0.6 mg m−2 day−1) with the highest CH4 emissions at the Meissen harbor (94 kg CH4 year−1). Such human-altered riverine habitats (i.e., harbors and similar) have not been taken into consideration in the CH4 budget before, despite them being part of the river ecosystems, they may be significant CH4 hot-spots. The total CH4 diffusive flux from the whole Elbe was estimated to be approximately 97 t CH4 year−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted from Ward—A Mountain River, Chap. 23 in River Handbook (Calow and Petts 1992)

Similar content being viewed by others

References

  • Abril G, Iversen N (2002) Methane dynamics in a shallow non-tidal estuary (Randers Fjord, Denmark). Mar Ecol Prog Ser 230:171–181

    Article  Google Scholar 

  • Abril G, Commarieu MV, Guérin F (2007) Enhanced CH4 oxidation in an estuarine turbidity maximum. Limnol Oceanogr 52(1):470–475

    Article  CAS  Google Scholar 

  • Adams MS, Kausch H, Gaumert T, Krüger KE (1996) The effect of the reunification of Germany on the water chemistry and ecology of selected rivers. Environ Conserv 23(1):35–43

    Article  CAS  Google Scholar 

  • Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220

    Article  CAS  Google Scholar 

  • Anthony SE, Prahl FG, Peterson TD (2012) Methane dynamics in the Willamette River, Oregon. Limnol Oceanogr 57(5 ):1517–1530

    Article  CAS  Google Scholar 

  • Auman AJ, Stolyar S, Costello AM, Lidstrom ME (2000) Molecular characterization of methanotrophic isolates from fresh-water lake sediment. Appl Environ Microbiol 66:5259–5266

    Article  CAS  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18:B4009

    Article  Google Scholar 

  • Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res 113:G02024

    Article  Google Scholar 

  • Bastviken D, Tranvik L, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331(6013):50

    Article  CAS  Google Scholar 

  • Baulch HM, Dillon PJ, Maranger R, Schiff SL (2011) Diffusive and ebullitive transport of methane and nitrous oxide from streams: are bubble-mediated fluxes important? J Geophys Res. https://doi.org/10.1029/2011JG001656

    Article  Google Scholar 

  • Beaulieu JJ, Smolenski RL, Nietch CT, Townsend-Small A, Elovitz MS (2014) High methane emissions from a midlatitude reservoir draining an agricultural watershed. Environ Sci Technol 48:11100–11108. https://doi.org/10.1021/es501871g

    Article  CAS  PubMed  Google Scholar 

  • Bednařík A, Čáp L, Maier V, Rulík M (2015) Contribution of methane benthic and atmospheric fluxes of an experimental area (Sitka Stream). Clean Soil Air Water 43:1136–1142. https://doi.org/10.1002/clen.201300982

    Article  CAS  Google Scholar 

  • Blees J, Niemann H, Zopfi WChB, Schubert J, Kirf CJ, Veronesi MK, Hitz ML, Lehmann C M. F (2014) Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland). Limnol Oceanogr 59(2):311–324. https://doi.org/10.4319/lo.2014.59.2.0311

    Article  CAS  Google Scholar 

  • Borges A, Vanderborght J-P, Schiettecatte L-S, Gazeau F, Ferrón-Smith S, Delile B, Frankignoulle M (2014) Variability of gas transfer velocity of CO2 in a macrotidal estuary (The Sheldt). Estuaries 27:593–603. https://doi.org/10.1007/BF02907647

    Article  Google Scholar 

  • Börjesson G, Sundh I, Svensson B (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48(3):305–312

    Article  Google Scholar 

  • Bussmann I (2005) Methane release through suspension of littoral sediment. Biogeochemistry 74(3):283–302

    Article  CAS  Google Scholar 

  • Bussmann I, Matousu A, Osudar R, Mau S (2015) Assessment of the radio 3H–CH4 tracer technique to measure aerobic methane oxidation in the water column. Limnol Oceanogr Methods 13(6):312–327

    Article  CAS  Google Scholar 

  • Calow P, Petts GE, [eds.] (1992) The rivers handbook: hydrological and ecological principles, vol 1. Blackwell Scientific Publications, Oxford, p 499

    Google Scholar 

  • Campeau A, Lapierre J-F, Vachon D, del Giorgio PA (2014) Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Québec. Global Biogeochem Cycles. https://doi.org/10.1002/2013GB004685

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–118. https://doi.org/10.1007/s10021-006-9013-8

    Article  CAS  Google Scholar 

  • Crawford JT, Striegl RG, Wickland KP, Dornblaser MM, Stanley EH (2013) Emissions of carbon dioxide and methane from a headwater stream network of interior Alaska. J Geophys Res Biogeosci 118:482–494

    Article  CAS  Google Scholar 

  • Dawson JJ, Adhikari YR, Soulsby C, Stutter MI (2012) The biogeochemical reactivity of suspended particulate matter at nested sites in the Dee basin, NE Scotland. Sci Total Environ 434:159–170. https://doi.org/10.1016/j.scitotenv.2011.08.048

    Article  CAS  PubMed  Google Scholar 

  • de Angelis MA, Lilley MD (1987) Methane in surface waters of Oregon estuaries and rivers. Limnol Oceanogr 32(3):716–722

    Article  Google Scholar 

  • Delsontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B (2010) Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44:2419–2425

    Article  CAS  Google Scholar 

  • DelSontro T, Kunz MJ, Kempter T, Wüest A, Wehrli B, Senn DB (2011) Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environ Sci Technol 45:9866–9873. https://doi.org/10.1021/es2005545

    Article  CAS  PubMed  Google Scholar 

  • Devlin SP, Saarenheimo J, Syväranta J, Jones RI (2015) Top consumer abundance influences lake methane efflux. Nat Commun 6:8787. https://doi.org/10.1038/ncomms9787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duchemin E, Lucotte M, Canuel R (1999) Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies. Environ Sci Technol 33:350–357

    Article  CAS  Google Scholar 

  • Dzyuban AN (2011) Methane and its transformation processes in water of some tributaries of the Rybinsk Reservoir. Water Resour 38(5):615–620

    Article  CAS  Google Scholar 

  • Grunwald M, Dellwig O, Beck M, Dippner JW, Freund JA, Kohlmeier C, Schnetger B, Brumsack H-J (2009) Methane in the southern North Sea: sources, spatial distribution and budgets. Estuar Coast Shelf Sci 81(4): 445–456

    Article  CAS  Google Scholar 

  • Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466(7305):478–481. https://doi.org/10.1038/nature09186

    Article  CAS  PubMed  Google Scholar 

  • Guérin F, Abril G (2007) Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J Geophys Res Biogeosci 112:G03006

    Article  Google Scholar 

  • Guérin F, Abril G, Richard S, Burban B, Reynouard C, Seyler P, Delmas R (2006) Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers. Geophys Res Lett 33:L21407. https://doi.org/10.1029/2006GL027929

    Article  CAS  Google Scholar 

  • Henning M, Hentschel B (2013) Sedimentation and flow patterns induced by regular and modified groynes on the River Elbe, Germany. Ecohydrology 6:598–610. https://doi.org/10.1002/eco.1398

    Article  Google Scholar 

  • Hertwich EG (2013) Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ Sci Technol 47:9604–9611

    Article  CAS  Google Scholar 

  • Hlaváčová E, Rulík M, Čáp L (2005) Anaerobic microbial metabolism in hyporheic sediment of a gravel bar in a small lowland stream. River Res Appl 21:1003–1011

    Article  Google Scholar 

  • IKSE (Internationale Kommission zum Schutz der Elbe) (ed) (2005) Die Elbe und ihr Einzugsgebiet – Ein geographisch-hydrologischer und wasserwirtschaftlicher Überblick. http://www.ikse-mkol.org/publikationen/verschiedenes/1/

  • IPCC (Intergovernmental Panel on Climate Change) (2014) Climate change 2013 – The physical science Basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107415324

    Book  Google Scholar 

  • Jones JB, Mulholland PJ (1998) Methane input and evasion in a hardwood forest stream: effects of subsurface flow from shallow and deep pathways. Limnol Oceanogr 43:1243–1250

    Article  CAS  Google Scholar 

  • Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A (2006) Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol Oceanogr 51(2):1195–1204

    Article  CAS  Google Scholar 

  • Kirschke S et al (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823

    Article  CAS  Google Scholar 

  • Kopáček J, Hejzlar J (1993) Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int J Environ Anal Chem 53:173–183

    Article  Google Scholar 

  • Liikanen A, Martikainen P (2003) Effect of ammonium and oxygen on the methane and nitrous oxide fluxes across sediment-water interface in a eutrophic lake. Chemosphere 52:1287–1293

    Article  CAS  Google Scholar 

  • Lilley MD, de Angelis MA, Olson EJ (1996) Methane concentration and estimated fluxes from Pacific northwest rivers. In: Adams DD, Seitzinger SP, Crill PM (eds) Cycling of reduced gases in the Hydrosphere. Schweizerbart’scheVerlagbuchhandlung, Stuttgart, pp 187–196

    Google Scholar 

  • Mach V, Bednařík A, Čáp L, Šipoš J, Rulík M (2016) Seasonal measurement of greenhouse gas concentrations and emissions along the longitudinal profile of small stream. Pol J Environ Stud 25(5):2047–2056

    Article  CAS  Google Scholar 

  • Maeck A, DelSontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A (2013) Sediment trapping by dams creates methane emissions hot spots. Environ Sci Technol 47:8130–8137

    Article  CAS  Google Scholar 

  • Matoušů A, Osudar R, Šimek K, Bussmann I (2017) Methane distribution and methane oxidation in the water column of the Elbe estuary, Germany. Aquat Sci 79:443–458

    Article  Google Scholar 

  • McAuliffe C (1971) Gas chromatographic determination of solutes by multiple phase equilibrium. Chemtech 1:46–51

    Google Scholar 

  • Middelburg JJ, Nieuwenhuize J, Iversen N, Høgh N, de Wilde W, Helder W, Seifert R, Christof O (2002) Methane distribution in European tidal estuaries. Biogeochemistry 59:95–119

    Article  Google Scholar 

  • Mohanty SR, Bodelier PLE, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice fields and forest soil. FEMS Microbial Ecol 62:24–31

    Article  CAS  Google Scholar 

  • Ortiz-Llorente MJ, Alvarez-Cobelas M (2012) Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmos Environ 59:328–337

    Article  CAS  Google Scholar 

  • Osudar R, Matoušů A, Alawi M, Wagner D, Bussmann I (2015) Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea). Estuar Coast Shelf Sci 160:10–21

    Article  CAS  Google Scholar 

  • Prange A, Furrer R, Einax JW (eds) (2000) Die Elbe und ihre Nebenflüsse – Belastung, Trends, Bewertung, Perspektiven. ATV-DVWK, AG “Schadstoffe und Ökologie der Elbe”. GFA Verlag, Hennef, 168 pp

    Google Scholar 

  • Richey JE, Devol AH, Victoria R, Wofsy S (1988) Biogenic gases and the oxidation and reduction of carbon in the Amazon River and floodplain waters. Limnol Oceanogr 33:55 l–561

    Article  Google Scholar 

  • Rulík M, Bednařík A, Mach V, Brablcová L, Buriánková L, Badurová P, Gratzová K (2013) Methanogenic system of a small lowland stream Sitka, Czech Republic. In Matovic MD (ed) Biomass now—cultivation and utilization, Intech, New York, 395–426. https://doi.org/10.5772/3437

    Chapter  Google Scholar 

  • Saarnio S, Winiwarter W, Leita J (2009) Methane release from wetlands and watercourses in Europe. Atmos Environ 43:1421–1429

    Article  CAS  Google Scholar 

  • Sawakuchi HO, Bastviken D, Sawakuchi A, Krusche A, Ballester MVR, Richey JE (2014) Methane emissions from Amazonian Rivers and their contribution to the global methane budget. Glob Change Biol 20:2829–2840

    Article  Google Scholar 

  • Sepulveda-Jauregui A, Walter Anthony K, Martinez-Cruz K, Greene S, Thalasso F (2015) Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences 12:3197–3223

    Article  CAS  Google Scholar 

  • Silvennoinen H, Liikanen A, Rintala J, Martikainen PJ (2008) Greenhouse gas fluxes from eutrophic Temmesjoki River and its Estuary in the Liminganlahti Bay (the Baltic Sea). Biogeochemistry 90:193–208

    Article  CAS  Google Scholar 

  • Stanley EH, Casson NJ, Crawford J, Loken L (2016) The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol Monogr 86(2):146–171

    Article  Google Scholar 

  • StLouis VL, Kelly C, Duchemin E, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate. Bioscience 50(9):766–775

    Article  Google Scholar 

  • Striegl RG, Dornblaser MM, McDonald CP, Rover JR, Stets EG (2012) Carbon dioxide and methane emissions from the Yukon River system. Global Biogeochem Cycles 26:1–11

    Article  Google Scholar 

  • Swinnerton JW, Linnenbom VJ, Cheek CH (1969) Distribution of methane and carbon monoxide between the atmosphere and natural waters. Environ Sci Technol 3(9):836–838

    Article  CAS  Google Scholar 

  • Upstill-Goddard RC, Barnes J, Owens NJP (2000) Methane in the southern North Sea: Low-salinity inputs, estuarine removal, and atmospheric flux. Glob Biogeochem Cycles 14(4):1205

    Article  CAS  Google Scholar 

  • Utsumi M, Nojiri Y, Nakamura T, Nozawa T, Otsuki A, Takamura N, Watanabe M, Seki H (1998) Dynamics of dissolved methane and methane oxidation in dimictic Lake Nojiri during winter. Limnol Oceanogr 43:10–17

    Article  CAS  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382. https://doi.org/10.1029/92JC00188

    Article  Google Scholar 

  • Wilcock RJ, Sorrell BK (2008) Emissions of greenhouse gases CH4 and N2O from low-gradient streams in agriculturally developed catchments. Water Air Soil Pollut 188:155–170

    Article  CAS  Google Scholar 

  • Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21:78–80

    Article  CAS  Google Scholar 

  • Zaiss U, Winter P, Kaltwasser H (1982) Microbial methane oxidation in the River Saar. Zeitschrift fur Allgemeine Mikrobiologie 2(22):139–148

    Article  Google Scholar 

  • Zhang G, Zhang J, Liu S, Ren J, Xu J, Zhang F (2008) Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes. Biogeochemistry 91:71–84

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of our friend and colleague Dr. Jan Jezbera, who supported this study by providing his knowledge, a lot of encouragement, and help during the sampling campaigns on the Elbe. This project was financially supported by project GAJU 145/2013/D, by project GAČR-13-00243S (PI-K. Šimek), and by project CZ.1.07/2.3.00/20.0204 (CEKOPOT) co-financed by the European Social Fund and the state budget of the Czech Republic. This logistically and technically challenging project would not have taken place without the great help and support of many of our colleagues! Infinite gratitude belongs to Prof. Jan Kubečka for his motivation and providing the Thor Heyerdahl research vessel, to Ing. Radka Malá and Marie Štojdlová for their technician help in the laboratory, further to Dr. Martin Blaser from the Max Planck Institute for Terrestrial Microbiology in Marburg (Germany), Dr. Vojtěch Kasalický, Dr. Jiří Nedoma, Doc. Josef Hejzlar and his colleagues, Prof. Hana Šantrůčková, Prof. Jaroslav Vrba, Jakub Matoušů, Dr. Kateřina Diáková, Dr. Jaroslava Frouzová, Mgr. Kateřina Bernardová, and Dr. Tomáš Jůza, for providing and organizing logistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Matoušů.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matoušů, A., Rulík, M., Tušer, M. et al. Methane dynamics in a large river: a case study of the Elbe River. Aquat Sci 81, 12 (2019). https://doi.org/10.1007/s00027-018-0609-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-018-0609-9

Keywords

Navigation