Skip to main content
Log in

Numerical study on strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The physical and optical properties of compressively strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers are numerically studied. The simulation results show that the maximum optical gain, transparency carrier densities, transparency radiative current densities, and differential gain of InGaAsP quantum wells can be efficiently improved by employing a compressive strain of approximately 1.24% in the InGaAsP quantum wells. The simulation results suggest that the 850-nm InGaAsP/InGaP vertical-cavity surface-emitting lasers have the best laser performance when the number of quantum wells is one, which is mainly attributed to the non-uniform hole distribution in multiple quantum wells due to high valence band offset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Iga, IEEE J. Sel. Top. Quantum Electron. QE-6, 1201 (2000)

    Article  Google Scholar 

  2. W.W. Chow, K.D. Choquette, M.H. Crawford, K.L. Lear, G.R. Hadley, IEEE J. Quantum Electron. 33, 1810 (1997)

    Article  Google Scholar 

  3. E. Towe, R.F. Leheny, A. Yang, IEEE J. Sel. Top. Quantum Electron. QE-6, 1458 (2000)

    Article  Google Scholar 

  4. J.S. Gustavsson, A. Haglund, J. Bengtsson, A. Larsson, IEEE J. Quantum Electron. 38, 1089 (2002)

    Article  Google Scholar 

  5. D. Wiedenmann, R. King, C. Jung, R. Jäger, R. Michalzik, P. Schnitzer, M. Kicherer, K.J. Ebeling, IEEE J. Sel. Top. Quantum Electron. 5, 503 (1999)

    Article  Google Scholar 

  6. F.H. Peters, M.H. MacDougal, IEEE Photon. Technol. Lett. 13, 645 (2001)

    Article  Google Scholar 

  7. E. Yablonovitch, E.O. Kane, IEEE J. Lightwave Technol. 6, 1292 (1988)

    Article  Google Scholar 

  8. E.P. O’Reilly, A.R. Adams, IEEE J. Quantum Electron. QE-30, 366 (1994)

    Article  Google Scholar 

  9. T.R. Chen, B. Zhao, L. Eng, Y.H. Zhoung, J. O’Brien, A. Yariv, Electron. Lett. 29, 1525 (1993)

    Google Scholar 

  10. T.E. Sale, C. Amamo, Y. Ohiso, T. Kurokawa, Appl. Phys. Lett. 71, 1002 (1997)

    Article  Google Scholar 

  11. J.S. Roberts, J.P.R. David, L. Smith, P.L. Tihanyi, J. Cryst. Growth 195, 668 (1998)

    Article  Google Scholar 

  12. L.J. Mawst, S. Rusli, A. Al-Muhanna, J.K. Wade, IEEE J. Sel. Top. Quantum Electron. 5, 785 (1999)

    Article  Google Scholar 

  13. N. Tansu, D. Zhou, L.J. Mawst, IEEE Photon. Technol. Lett. 12, 603 (2000)

    Article  Google Scholar 

  14. H.C. Kuo, Y.S. Chang, F.I. Lai, T.H. Hsueh, Electron. Lett. 39, 1051 (2003)

    Article  Google Scholar 

  15. Y.H. Chang, H.C. Kuo, F.I. Lai, Y.A. Chang, C.Y. Lu, L.H. Laih, S.C. Wang, IEEE J. Lightwave Technol. 22, 2828 (2004)

    Article  Google Scholar 

  16. PICS3D by Crosslight Software, Inc., Burnaby, Canada, 2005 (http://www.crosslight.com)

  17. C.-S. Chang, S.L. Chuang, IEEE J. Sel. Top. Quantum Electron. 1, 218 (1995)

    Article  Google Scholar 

  18. Y.-P. Chao, S.L. Chuang, Phys. Rev. B 46, 4110 (1992)

    Article  Google Scholar 

  19. J. Minch, S.H. Park, T. Keating, S.L. Chuang, IEEE J. Quantum Electron. QE-35, 771 (1999)

    Article  Google Scholar 

  20. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  Google Scholar 

  21. Y.-H. Cho, K.-S. Kim, S.-W. Ryu, S.-K. Kim, B.-D. Choe, H. Lim, Appl. Phys. Lett. 66, 1785 (1995)

    Article  Google Scholar 

  22. Y.-H. Cho, B.-D. Choe, H. Lim, Appl. Phys. Lett. 69, 3740 (1996)

    Article  Google Scholar 

  23. S.L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995)

    Google Scholar 

  24. D. Ahn, S.L. Chuang, Y.-C. Chang, J. Appl. Phys. 64, 4056 (1988)

    Article  Google Scholar 

  25. D. Ahn, S.L. Chuang, IEEE J. Quantum Electron. QE-26, 13 (1990)

    Article  Google Scholar 

  26. J.C.L. Yong, J.M. Rorison, I.H. White, IEEE J. Quantum Electron. QE-38, 1553 (2002)

    Article  Google Scholar 

  27. W.J. Fan, S.T. Ng, S.F. Yoon, M.F. Li, T.C. Chong, J. Appl. Phys. 93, 5836 (2003)

    Article  Google Scholar 

  28. B. Romero, J. Arias, I. Esquivias, M. Cada, Appl. Phys. Lett. 76, 1504 (2000)

    Article  Google Scholar 

  29. G.K. Wachutka, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9, 1141 (1990)

  30. J. Piprek, Semiconductor Optoelectronic Device: Introduction to Physics and Simulation (Academic Press, San Diego, 2003)

    Google Scholar 

  31. W.W. Chow, E.D. Jones, N.A. Modine, A.A. Allerman, S.R. Kurtz, Appl. Phys. Lett. 75, 2891 (1999)

    Article  Google Scholar 

  32. J.W. Matthews, A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974)

    Article  Google Scholar 

  33. X. Wu, J.-M. Baribeau, J.A. Gupta, M. Beaulieu, J. Cryst. Growth 282, 18 (2005)

    Article  Google Scholar 

  34. Y.-C. Liang, H.-Y. Lee, H.-J. Liu, C.-K. Huang, T.-B. Wu, J. Cryst. Growth 279, 114 (2005)

    Article  Google Scholar 

  35. T. Kitatani, A. Taike, M. Aoki, J. Cryst. Growth 273, 19 (2004)

    Article  Google Scholar 

  36. H.C. Kuo, H.H. Yao, Y.H. Chang, Y.A. Chang, M.Y. Tsai, J. Hsieh, E.Y. Chang, S.C. Wang, J. Cryst. Growth 272, 538 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-K. Kuo.

Additional information

PACS

42.55.Px; 78.20.-e; 78.20.Bh; 78.30.Fs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, YK., Chen, JR., Chen, ML. et al. Numerical study on strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers. Appl. Phys. B 86, 623–631 (2007). https://doi.org/10.1007/s00340-006-2567-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2567-5

Keywords

Navigation