Skip to main content
Log in

A microchip laser feedback interferometer with nanometer resolution and increased measurement speed based on phase meter

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We introduce a new signal processing method based on phase meter into heterodyne microchip Nd:YAG laser feedback interferometer. The nanometer resolution and a higher measurement speed are realized. The factors determining the accuracy are analyzed. The displacements of the Physik Instrumente nanopositioning system and two piezoelectric transducers were measured. Experimental results indicate laser feedback interferometer’s ability of measuring nanoscale displacement and present promising application prospects in noncooperative targets measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Bearden, M.P. Oneill, L.C. Osborne, T.L. Wong, Imaging and vibrational analysis with laser-feedback interferometry. Opt. Lett. 18, 238–240 (1993)

    Article  ADS  Google Scholar 

  2. T.L. Wong, S.L. Sabato, A. Bearden, PHOEBE a prototype scanning laser-feedback microscope for imaging biological cells in aqueous media. J Microsc. Oxf 177, 162–170 (1995)

    Article  Google Scholar 

  3. B. Ovryn, J.H. Andrews, Phase-shifting laser feedback interferometry. Opt. Lett. 23, 1078–1080 (1998)

    Article  ADS  Google Scholar 

  4. Erdinç Atılgan, Ben Ovryn, Reflectivity and topography of cells grown on glass-coverslips measured with phase-shifted laser feedback interference microscopy. Biomed. Opt. Express 2, 2417–2437 (2011)

    Article  Google Scholar 

  5. G. Dongmei, W. Ming, T. Suqing, Self-mixing interferometer based on sinusoidal phase modulating technique. Opt. Express 13, 1537–1543 (2005)

    Article  Google Scholar 

  6. W. Ming, Fourier transform method for self-mixing interference signal analysis. Opt. Laser Technol. 33, 409–416 (2001)

    Article  ADS  Google Scholar 

  7. E. Lacot, O. Hugon, Phase-sensitive laser detection by frequency-shifted optical feedback. Phys. Rev. A 70, 053824 (2004)

    Article  ADS  Google Scholar 

  8. X. Wan, D. Li, S. Zhang, Quasi-common-path laser feedback interferometry based on frequency shifting and multiplexing. Opt. Lett. 32, 367–369 (2007)

    Article  ADS  Google Scholar 

  9. E. Lacot, O. Jacquin, G. Roussely, O. Hugon, H.G. de Chatellus, Comparative study of autodyne and heterodyne laser interferometry for imaging. J. Opt. Soc. Am. A 27, 2450–2458 (2010)

    Article  ADS  Google Scholar 

  10. K. Otsuka, K. Abe, J.Y. Ko, T.S. Lim, Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser. Opt. Lett. 27, 1339–1341 (2002)

    Article  ADS  Google Scholar 

  11. A. Witomski, E. Lacot, O. Hugon, S. Fechner, Absolute measurement of laser frequency-shifted optical feedback by pump modulation. Opt. Commun. 254, 119–127 (2005)

    Article  ADS  Google Scholar 

  12. O. Hugon, I.A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, A. Witomski, Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser. Ultramicroscopy 108, 523–528 (2008)

    Article  Google Scholar 

  13. K. Otsuka, Self-mixing thin-slice solid-state laser metrology. Sensors 11, 2195–2245 (2011)

    Article  Google Scholar 

  14. S. Okamoto, H. Takeda, F. Kannari, Ultrahighly sensitivity laser-Doppler velocity meter with a diode-pumped Nd:yVO4 microchip laser. Rev. Sci. Instrum. 66, 3116–3120 (1995)

    Article  ADS  Google Scholar 

  15. Y. Tan, C. Xu, S. Zhang, S. Zhang, Power spectral characteristic of a microchip Nd:YAG laser subjected to frequency-shifted optical feedback. Laser Phys. Lett. 10, 25001 (2013)

    Article  Google Scholar 

  16. K. Otsuka, Polarization-dependent intensity noise in a microchip solid-state laser with spatially coherent polarization vector fields. Opt. Lett. 37, 4287–4289 (2012)

    Article  ADS  Google Scholar 

  17. P. G. Halverson, D. R. Johnson, A. Kuhnert, S. B. Shaklan, and R. Spero, A multichannel averaging phasemeter for picometer precision laser metrology, In: Proceedings of SPIE 3740, optical engineering for sensing and nanotechnology (ICOSN ‘99), 646–649 (1999)

  18. D.J. Lin, J.Q. Yan, Z.X. Chao, H. Jiang, C.Y. Yin, Phasemeter with external trigger applied to PZT-modulated interferometer. Int. J. Electron. 89, 759–769 (2002)

    Article  Google Scholar 

  19. M. Hsu, I. Littler, D.A. Shaddock, J. Herrmann, R.B. Warrington, M.B. Gray, Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters. Opt. Lett. 35, 4202–4204 (2010)

    Article  ADS  Google Scholar 

  20. C. Weichert, P. Kochert, R. Koning, J. Flugge, B. Andreas, U. Kuetgens, A. Yacoot, A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm, Meas. Sci. Technol. 23 (2012)

  21. B. Edlen, The refractive index of air. Metrologia 2, 71–80 (1966)

    Article  ADS  Google Scholar 

  22. W.X. Chen, X.W. Long, S.L. Zhang, G.Z. Xiao, Phase retardation measurement by analyzing flipping points of polarization states in laser with an anisotropy feedback cavity. Opt. Laser Technol. 44, 2427–2431 (2012)

    Article  ADS  Google Scholar 

  23. Y. Wu, Y.D. Tan, Z.L. Zeng, S.L. Zhang, Note: High-performance HeNe laser feedback interferometer with birefringence feedback cavity scanned by piezoelectric transducer. Rev. Sci. Instrum. 84, 056103 (2013)

    Article  ADS  Google Scholar 

  24. http://cp.literature.agilent.com/litweb/pdf/5989-9354EN.pdf

  25. M. Ahmed, N. Z. El-Sayed, H. Ibrahim, Chaos and noise control by current modulation in semiconductor lasers subject to optical feedback, Eur. Phys. J. D. 66 (2012)

Download references

Acknowledgments

This work is supported by the Major National Scientific Instrument and Equipment Development Project of China (Grant No. 2011YQ04013603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Tan, Y., Ren, Z. et al. A microchip laser feedback interferometer with nanometer resolution and increased measurement speed based on phase meter. Appl. Phys. B 116, 609–616 (2014). https://doi.org/10.1007/s00340-013-5743-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5743-4

Keywords

Navigation