Skip to main content
Log in

A portable miniaturized laser heterodyne radiometer (mini-LHR) for remote measurements of column CH4 and CO2

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present the design of a portable version of our miniaturized laser heterodyne radiometer (mini-LHR) that simultaneously measures methane (CH4) and carbon dioxide (CO2) in the atmospheric column. The mini-LHR fits on a backpack frame, operates autonomously, and requires no infrastructure because it is powered by batteries charged by a folding 30 W solar panel. Similar to our earlier instruments, the mini-LHR is a passive laser heterodyne radiometer that operates by collecting sunlight that has undergone absorption by CH4 and CO2. Within the mini-LHR, sunlight is mixed with light from a distributive feedback (DFB) laser centered at approximately 1.64 μm where both gases have absorption features. The laser scans across these absorption features roughly every minute and the resulting beat signal is collected in the radio frequency (RF). Scans are averaged into half hour and hour data products and analyzed using the Planetary Spectrum Generator (PSG) retrieval to extract column mole fractions. Instrument performance is demonstrated through two deployments at significantly different sites in interior Alaska and Hawaii. The resolving power (λ/∆λ) is greater than 500,000 at 1.64 μm with precisions of better than 20 ppb and 1 ppm for CH4 and CO2, respectively. Because mini-LHR instruments are portable and can be co-located, they can be used to characterize bias between larger, stationary, column observing instruments. In addition, mini-LHRs can be deployed quickly to respond to transient events such as methane leaks or can be used for field studies targeting geographical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. L. Wilson, M. L. McLinden, Miniaturized laser heterodyne radiometer for carbon dioxide, methane and carbon monoxide measurements in the atmospheric column, (Filed 2012). U.S. Patent No. 8699029, awarded on 15 Apr 2014

  2. H.R. Melroy, E.L. Wilson, G.B. Clarke, L.E. Ott, J.-P. Mao, A.K. Ramanathan, M.L. McLinden, Autonomous field measurements of CO2 in the atmospheric column with the miniaturized laser heterodyne radiometer (mini-LHR). Appl. Phys. B 120, 609–615 (2015)

    Article  ADS  Google Scholar 

  3. G. B. Clarke, E. L. Wilson, P. Palmer, L. Feng, J. P. Mao, A. Ramanathan, L. Ott, B. N. Duncan, H. R. Melroy, S. R. Kawa, M. L. McLinden, B. N. Holben, and A. J. DiGregorio, The science and technology case for a global network of compact, low cost ground-based laser heterodyne radiometers for column measurements of CO2 and CH4. American Geophysical Union (AGU) Fall Meeting (2015)

  4. E.L. Wilson, M.L. McLinden, J.H. Miller, G.R. Allen, L.E. Ott, H.R. Melroy, G.B. Clarke, Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column. Lasers Opt. Appl. Phys. B 114, 385–393 (2013). https://doi.org/10.1007/s00340-013-5531-1

    Article  ADS  Google Scholar 

  5. E.L. Wilson, A.J. DiGregorio, V.J. Riot, M.S. Ammons, W.W. Bruner, D. Carter, J.-P. Mao, A. Ramanathan, S.E. Strahan, L.D. Oman, C. Hoffman, R.M. Garner, A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat. Meas. Sci. Technol. 28, 035902 (2017)

    Article  ADS  Google Scholar 

  6. G.B. Clarke, E.L. Wilson, J.H. Miller, H.R. Melroy, Uncertainty analysis for the miniaturized laser heterodyne radiometer (mini-LHR). Meas. Sci. Technol. 25, 055204–055209 (2014)

    Article  ADS  Google Scholar 

  7. D. Wunch, G.C. Toon, F. Blavier, L.R.A. Washenfelder, J. Notholt, B. Connor, D.W.T. Griffith, V. Sherlock, P.O. Wennberg, The total carbon column observing network (TCCON). Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369, 2087–2112 (2011)

    Article  ADS  Google Scholar 

  8. R. T. Menzies, M. S. Shumate, Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants. Joint Conference on sensing of environmental pollutants, pp. 1–4 (1971)

  9. D. Weidmann, W.J. Reburn, K.M. Smith, Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis. Appl. Opt. 46, 7162–7171 (2007)

    Article  ADS  Google Scholar 

  10. A. Delahaigue, D. Courtois, C. Thiebeaux, S. Kalite, B. Parvitte, Atmospheric laser heterodyne detection. Infrared Phys. Technol. 37, 7–12 (1996)

    Article  ADS  Google Scholar 

  11. R.K. Seals Jr., Analysis of tunable laser heterodyne radiometry: remote sensing of atmospheric gases. AIAA J. 12, 1118–1122 (1974)

    Article  ADS  Google Scholar 

  12. V. Zeninari, B. Parvitte, D. Courtois, A. Delahaigue, C. Thiebeaux, An instrument for atmospheric detection of NH3 by laser heterodyne radiometry. J. Quant. Spectros. Radiat. Transfer 59, 353–359 (1998)

    Article  ADS  Google Scholar 

  13. R.T. Menzies, A re-evaluation of laser heterodyne radiometer ClO measurements. Geophys. Res. Lett. 10, 729–732 (1983)

    Article  ADS  Google Scholar 

  14. R. T. Menzies, Monitoring atmospheric pollutants with a heterodyne radiometer transmitter-receiver, United States Patent, Patent number 3,766,380 (1973)

  15. B.N. Holben, D. Tanre, T.F. Eck, I. Slutsker, N. Abuhassan, W.W. Newcomb, J. Schaefer, B. Chatenet, F. Lavenue, Y.J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Kamieli, N.T. O’Neill, C. Pietras, R.T. Pinker, K. Voss, G. Zibordi, An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J. Geophys. Res. 106, 67–97 (2001)

    Article  Google Scholar 

  16. B.N. Holben, T.F. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenue, I. Jankowiak, A. Smirnov, AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66, 1–16 (1998)

    Article  ADS  Google Scholar 

  17. E. L. Wilson, Field results from 3 campaigns to validate the performance of the miniaturized laser heterodyne radiometer (mini-LHR) for measuring carbon dioxide and methane in the atmospheric column, Fall Meeting of the American Geophysical Union Proceedings, San Francisco, CA (2013)

  18. G. L. Villanueva, M. Smith, M. J. Wolff, S. Protopapa, T. Hewagama, A. M. Mandell, S. Faggi, Planetary spectrum generator (PSG). https://psg.gsfc.nasa.gov (2019)

  19. G.L. Villanueva, M.J. Mumma, R.E. Novak, H.U. Kaufl, P. Hartogh, T. Encrenaz, A. Tokunaga, A. Khayat, M.D. Smith, Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs. Science 348, 218–221 (2015)

    Article  ADS  Google Scholar 

  20. M. D. Smith, M. J. Wolff, R. T. Clancy, and S. L. Murchie, Compact reconnaissance imaging spectrometer observations of water vapor and carbon monoxide, J. Geophys. Res. 114 (2009). https://doi.org/10.1029/2008JE003288

  21. R.H. Reichle, R.D. Koster, G.J.M. DeLannoy, B.A. Forman, Q. Liu, S.P.P. Mahanama, A. Toure, Assessment and enhancement of MERRA land surface hydrology estimates. J. Clim. 24, 6322–6338 (2011)

    Article  ADS  Google Scholar 

  22. M.M. Rienecker et al., MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011)

    Article  ADS  Google Scholar 

  23. K. Levenberg, A method for the solution of certain non-linear problems in least squares. Am. Math. Soc. 2, 164–168 (1944)

    MathSciNet  MATH  Google Scholar 

  24. D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  25. W.D. Komhyr, T.B. Harris, L.S. Waterman, Atmospheric carbon dioxide at mauna loa observatory NOAA global monitoring for climatic change measurements with a nondispersive infrared analyzer, 1974–1985. J. Geophys. Res. 94, 8533–8547 (1989)

    Article  ADS  Google Scholar 

  26. K.W. Thoning, P.P. Tans, Atmospheric carbon dioxide at mauna loa observatory: analysis of the NOAA GMCC data 1974–1985. J. Geophys. Res. 94, 8549–8565 (1989)

    Article  ADS  Google Scholar 

  27. E.J. Dlugokencky, L.P. Steele, P.M. Lang, K.A. Masarie, Atmospheric methane at Mauna Loa and Barrow observatories: presentation and analysis of in-situ measurements. J. Geophys. Res. 100(23), 103–123 (1995)

    Google Scholar 

  28. K. A. Masarie, L. P. Steele, P. M. Lang, A rule-based expert system for evaluating the quality of long-term, in situ, gas chromatographic measurements of atmospheric methane, NOAA Tech. Memo. ERL CMDL-3, NOAA Environ Res. Lab, Boulder, Colorado (1991)

  29. D. Wunch, G.C. Toon, P.O. Wennberg, S.C. Wofsy, M. Stephen, M.L. Fischer, O. Uchino, J.B. Abshire, P.F. Bernath, S.C. Biraud, F. Blavier, L.C. Boone, K.P. Bowman, E.V. Browell, T. Campos, B.J. Connor, B.C. Daube, N.M. Deutscher, M. Diao, J.W. Elkins, C. Gerbig, E. Gottlieb, D. Griffith, D.F. Hurst, R. Jimenez, G. Keppel-Aleks, E.A.I. Kort, S. Park, J. Robinson, C.M. Roehl, Y. Sawa, V. Sherlock, C. Sweeney, T. Tanaka, M.A. Zondo, Calibration of the total carbon column observing network using aircraft profile data. Atmos. Meas. Tech. 3, 1351–1362 (2010)

    Article  Google Scholar 

  30. P.I. Palmer, E.L. Wilson, G.L. Villanueva, G. Liuzzi, L. Feng, A.J. DiGregorio, J.-P. Mao, L. Ott, B.N. Duncan, Potential improvements in global carbon flux estimates from a network of laser heterodyne radiometer measurements of column carbon dioxide. Atmos. Meas. Tech. 12, 2579–2594 (2019)

    Article  Google Scholar 

  31. O. Uchino, N. Kikuchi, T. Sakai, I. Morino, Y. Yoshida, T. Nagai, A. Shimizu, T. Shibata, A. Yamazaki, A. Uchiyama, N. Kikuchi, S. Oshchepkov, A. Bril, T. Yokota, Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO2: a case study over Tsukuba. Atmos. Chem. Phys. 12, 3393–3404 (2012)

    Article  ADS  Google Scholar 

  32. I. Aben, O. Hasekamp, W. Hartmann, Uncertainties in the space-based measurements Of CO2 columns due to scattering in the Earth’s atmosphere. J. Quant. Spectros. Radiat. Transfer 104, 450–459 (2007)

    Article  ADS  Google Scholar 

  33. J.-P. Mao, S.R. Kawa, Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide using reflected sunlight. Appl. Opt. 43, 914–927 (2004)

    Article  ADS  Google Scholar 

  34. Bureau International des poids et Meaures, JCM 200:1012: International vocabulary of metrology—basic and general concepts and associated terms (VIM), 3rd edition. http://www.bipm.org/en/publications/guides/vim.html (2012). Accessed 19 Jan 2016

  35. J. Messerschmidt, M.C. Geibel, T. Blumenstock, H. Chen, N.M. Deutscher, A. Engel, D.G. Feist, C. Gerbig, M. Gisi, F. Hase, K. Katrynski, O. Kolle, J.V. Lavric, J. Notholt, M. Palm, M. Ramonet, M. Rettinger, M. Schmidt, R. Sussmann, G.C. Toon, F. Truong, T. Warneke, P.O. Wennberg, D. Wunch, I. Xueref-Remy, Calibration of TCCON column-averaged CO2: the first aircraft campaign over European TCCON sites. Atmos. Chem. Phys. 11, 10765–10777 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jared Entin and the NASA Interdisciplinary (IDS) Program (Grant number 12-IDS12-0024, NRA: NNH12ZDA001N-IDS. Since gov, DUNS # is 004968611-CAGE: 36FC1), Eugenie Euskirchen and Colin Edgar at the University of Alaska Fairbanks, the Hi-SEAS V Crew, Jake Bleacher, Brent Holben and the AERONET team, Paul Wennberg, Coleen Roehl, and Deborah Wunch from TCCON, and former team members Greg Clarke and Hilary Melroy for help collecting data at TCCON sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Wilson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, E.L., DiGregorio, A.J., Villanueva, G. et al. A portable miniaturized laser heterodyne radiometer (mini-LHR) for remote measurements of column CH4 and CO2. Appl. Phys. B 125, 211 (2019). https://doi.org/10.1007/s00340-019-7315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7315-8

Navigation