Skip to main content
Log in

Nanoporous surfaces via impact of molten metallic droplets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here we describe a new pathway for the production of nanoporous surfaces, by recourse to molten droplet impact and solidification. The nanopores in this case are frozen in bubbles that nucleate in the melt due to gas supersaturation within 100 nanoseconds of impact. Initial observations and previous analysis are presented, as well as ongoing work to control or pattern porosity via process variation and substrate pre-treatment. This method is presumably not limited in material, and has potential to create large area, functional surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Weissmuller, R.N. Viswanath, D. Kramer, P. Ximmer, R. Wurschun, H. Gleiter, Charge-induced reversible strain in a metal. Science 300, 312 (2003)

    Article  ADS  Google Scholar 

  2. J. Oh, Y. Tak, J. Lee, Electrodeposition of Cu2O nanowires using nanoporous alumina template. Electrochem. Solid-State Lett. 7, C37 (2004)

    Google Scholar 

  3. Y.Z. Zhang, Y. Feng, Z.-M. Huang, S. Ramakrishna, C.T. Lin, Fabrication of porous electrospun nanofibers. Nanotechnology 17, 901 (2006)

    Article  ADS  Google Scholar 

  4. A.G. Cullis, L.T. Canham, P.D.J. Calcott, The structural and luminescence properties of porous silicon. Appl. Phys. Rev. 82, 909 (1997)

    Article  ADS  Google Scholar 

  5. M. Qu, Y. Wu, A. Gouldstone, Observations of nanoporous foam arising from impact and rapid solidification of molten Ni droplets. Appl. Phys. Lett. 90(25), 254101 (2007)

    Article  ADS  Google Scholar 

  6. P. Gougeon, C. Moreau, Simultaneous independent measurement of splat diameter and cooling time during impact on a substrate of plasma-sprayed molybdenum particles. J. Therm. Spray Technol. 10(1), 76–82 (2001)

    Article  ADS  Google Scholar 

  7. S.S. Cook, Erosion by water hammer. Proc. R. Soc. Lond. Ser. A 119, 481 (1928)

    Article  ADS  Google Scholar 

  8. C.J. Li, J.L. Li, Evaporated-gas-induced splashing model for splat formation during plasma spraying. Surf. Coat. Technol. 184(1), 13–23 (2004) 44

    Article  Google Scholar 

  9. T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Oxford University Press, London, 1993)

    Google Scholar 

  10. M. Qu, A. Gouldstone, On the role of bubbles in splat nanopores and adhesion. J. Therm. Spray Technol. 17(4), 486–494 (2008)

    Article  ADS  Google Scholar 

  11. A. Toramaru, Numerical study of nucleation and growth of bubbles in viscous magmas. J. Geophys. Res. 100, 1913–1931 (1995)

    Article  ADS  Google Scholar 

  12. D.E. Wroblewski, R. Khare, M. Gevelber, Solidification modeling of plasma sprayed TBC: analysis of remelt and multiple length scales of rough substrates. J. Therm. Spray Technol. 11(2), 266–275 (2002)

    Article  ADS  Google Scholar 

  13. P. Fauchais, M. Fukumoto, A. Vardelle, M. Vardelle, Knowledge concerning splat formation: an invited review. J. Therm. Spray Technol. 13(3), 337–360 (2004)

    Article  ADS  Google Scholar 

  14. L. Li, A. Gouldstone, S. Sampath, Intrinsic properties of thermal sprayed single splats on substrate, in Thermal Spray Solutions: Advances in Technology and Application (ITSC 2004, Osaka, Japan), Electronic Proceedings (2004)

  15. M. Fukumoto, Y. Huang, M. Ohwatari, Flattening mechanism in thermal sprayed particle impinging on a flat surface, in Thermal Spray, Meeting the Challenge of the 21st Century (ASM International, Materials Park, 1998), pp. 401–407

    Google Scholar 

  16. H.M. Gonnermann, M. Manga, The fluid mechanics inside a volcano. Annu. Rev. Fluid. Mech. 39, 321–356 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. B.C. Earls, Cavitation and Bubble Dynamics (Oxford University Press, London, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Gouldstone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, M., Colmenares, J.R., Valarezo, A. et al. Nanoporous surfaces via impact of molten metallic droplets. Appl. Phys. A 96, 391–397 (2009). https://doi.org/10.1007/s00339-009-5192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5192-4

PACS

Navigation