Skip to main content
Log in

The atmospheric corrosion of quaternary bronzes: An evaluation of the dissolution rate of the alloying elements

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A comparative evaluation of the corrosion behaviour of a G85 bronze in acid rain solutions was performed. As weathering technique, a wet–dry device was used to simulate a cyclic exposure to stagnant rain. The weathering solutions were a collected natural rain and an artificial solution reproducing the natural rain. The solutions were periodically monitored as concerns pH and metallic ion concentrations. On the aged specimens, surface studies were performed through OM, SEM and Raman analyses. At the end of weathering tests (40 days), weight loss measurements were carried out.

The aim of this work was to examine the reproducibility in laboratory of the corrosive conditions determined by a natural acid rain. The final goal of this research is to investigate the dissolution of a quaternary alloy exposed to acid rains.

The results showed slightly different corrosion behaviours as a consequence of the exposure to natural or synthetic rain. Concerning the mechanism of corrosion of G85 bronze, the innovative approach adopted in this study allowed one to point out the contribution of each alloying element to the general corrosion. Actually, while Cu and Pb progressively form insoluble corrosion compounds, Zn continuously dissolves, without forming detectable insoluble products. The absence of dissolved tin is remarkable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.E. Graedel, K. Nassau, J.P. Franey, Corros. Sci. 27, 639 (1987)

    Article  Google Scholar 

  2. J.P. Franey, M.E. Davis, Corros. Sci. 27, 659 (1987)

    Article  Google Scholar 

  3. T.E. Graedel, Corros. Sci. 27, 741 (1987)

    Article  Google Scholar 

  4. A. Krätschmer, I. Odnevall Wallinder, C. Leygraf, Corros. Sci. 44, 425 (2002)

    Article  Google Scholar 

  5. D.A. Scott, J. Podany, B.B. Considine (Eds.), Ancient & Historic Metals, Conservation and Scientific Research, Proceedings (The Getty Conservation Institute, 1994) p. 9

  6. L. Robbiola, L.-P. Hurtel, Mém. Etudes Sci. Rev. Metall. 88, 809 (1991)

    Google Scholar 

  7. I.O. Wallinder, C. Leygraf, Corros. Sci. 39, 2039 (1997)

    Article  Google Scholar 

  8. G. Brunoro, G. Laguzzi, L. Luvidi, C. Chiavari, Brit. Corros. J. 36, 227 (2001)

    Google Scholar 

  9. C. Chiavari, A. Colledan, A. Frignani, G. Brunoro, Mater. Chem. Phys. 95, 252 (2006)

    Article  Google Scholar 

  10. L. Morselli, E. Bernardi, C. Chiavari, G. Brunoro, Appl. Phys. A 79, 363 (2004)

    Article  ADS  Google Scholar 

  11. M. Edwards, N. Sprague, Corros. Sci. 43, 1 (2001)

    Article  Google Scholar 

  12. A. Elfström Broo, B. Berghult, T. Hedberg, Corros. Sci. 40, 1479 (1998)

    Article  Google Scholar 

  13. G.V. Korshin, J.F. Ferguson, A.N. Lancaster, Corros. Sci. 42, 53 (2000)

    Article  Google Scholar 

  14. E. Bernardi, PhD Thesis, Università di Bologna (2005)

  15. L. Robbiola, J.-M. Blengino, C. Fiaud, Corros. Sci. 40, 2083 (1998)

    Article  Google Scholar 

  16. L. Robbiola, C. Fiaud, S. Pennec, Preprints of ICOM-Committee for Conservation (James & James Science Pub., London, 1993) Vol. II-796

  17. D.J. Chakrabarti, D.E. Laughlin, Bull. Alloy Phase Diagr. 5, 5 (1984)

    Google Scholar 

  18. D.E. Tyler, W.T. Black, Introduction to Copper and Copper Alloys, In: ASM Handbook Volume 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook on CD-ROM (ASM International and The Dialog Corporation, Materials Park, OH, USA, 1999)

  19. C. Chiavari, K. Rahmouni, H. Takenouti, S. Joiret, P. Vermaut, L. Robbiola, Electrochim. Acta 52, 7760 (2007)

    Article  Google Scholar 

  20. C. Leygraf, T. Graedel, Atmospheric Corrosion (Wiley Interscience, New York, 2000)

    Google Scholar 

  21. F. Ammeloot, C. Fiaud, E.M.M. Sutter, Electrochim. Acta 44, 2549 (1999)

    Article  Google Scholar 

  22. I. Mabille, A. Bertrand, E.M.M. Sutter, C. Fiaud, Corros. Sci. 45, 855 (2003)

    Article  Google Scholar 

  23. C. Debiemme-Chouvy, F. Ammeloot, E.M.M. Sutter, Appl. Surf. Sci. 174, 55 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chiavari.

Additional information

PACS

82.45.Bb; 82.33.Tb; 92.40.Ea

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardi, E., Chiavari, C., Martini, C. et al. The atmospheric corrosion of quaternary bronzes: An evaluation of the dissolution rate of the alloying elements. Appl. Phys. A 92, 83–89 (2008). https://doi.org/10.1007/s00339-008-4451-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4451-0

Keywords

Navigation