Skip to main content
Log in

Structural properties of femtosecond laser-induced modifications in LiNbO3

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Structural modifications induced by femtosecond laser pulses in LiNbO3 were studied. The influence of the processing and focusing parameters was investigated. Two different types of modifications could be identified. High laser fluences cause a refractive index decrease, material damage and stresses in the surrounding crystalline lattice. At low laser fluences, an extraordinary index increase was observed that allows for optical waveguiding. This kind of modification is thermally unstable and correlates to a weak distortion of the lattice. The electrooptic coefficient measured in a waveguide was found to be substantially reduced. The mechanisms underlying the structural modifications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Luo, D. Wang, C. Li, H. Jiang, H. Yang, Q. Gong, J. Opt. A: Pure Appl. Opt. 4, 105 (2002)

    Article  ADS  Google Scholar 

  2. G. Zhou, M. Gu, Appl. Phys. Lett. 87, 241107 (2005)

    Article  ADS  Google Scholar 

  3. L. Gui, B. Xu, T.C. Chong, IEEE Photon. Technol. Lett. 16, 1337 (2004)

    Article  ADS  Google Scholar 

  4. R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, Appl. Phys. Lett. 88, 111109 (2006)

    Article  ADS  Google Scholar 

  5. J. Burghoff, C. Grebing, S. Nolte, A. Tünnermann, Appl. Surf. Sci., unpublished

  6. J. Burghoff, C. Grebing, S. Nolte, A. Tünnermann, Appl. Phys. Lett. 89, 081108 (2006)

    Article  ADS  Google Scholar 

  7. A.H. Nejadmalayeri, P.R. Herman, Opt. Lett. 31, 2987 (2006)

    Article  ADS  Google Scholar 

  8. D.C. Deshpande, A.P. Malshe, E.A. Stach, V. Radmilovic, D. Alexander, D. Doerr, D. Hirt, J. Appl. Phys. 97, 074316 (2005)

    Article  ADS  Google Scholar 

  9. S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E.G. Gamaly, Y. Liu, O.A. Louchev, K. Kitamura, Appl. Phys. Lett. 89, 062903 (2006)

    Article  ADS  Google Scholar 

  10. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Opt. Lett. 20, 73 (1995)

    Article  ADS  Google Scholar 

  11. W. Liu, O. Kosareva, I. Golubtsov, A. Iwasaki, A. Becker, V. Kandidov, S. Chin, Appl. Phys. B 76, 215 (2003)

    Article  ADS  Google Scholar 

  12. K. Yamada, W. Watanabe, T. Toma, K. Itoh, Opt. Lett. 26, 19 (2001)

    ADS  Google Scholar 

  13. J.H. Marburger, Prog. Quantum. Electron. 4, 35 (1975)

    Article  ADS  Google Scholar 

  14. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, Q. Gong, J. Opt. A: Pure Appl. Opt. 7, 655 (2005)

    Article  ADS  Google Scholar 

  15. D.M. Rayner, A. Naumov, P.B. Corkum, Opt. Express 13, 3208 (2005)

    Article  ADS  Google Scholar 

  16. L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Opt. Commun. 191, 333 (2001)

    Article  ADS  Google Scholar 

  17. F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 250, 164 (2006)

    Article  ADS  Google Scholar 

  18. W. Karthe, R. Müller, Integrierte Optik (Akademische Verlagsgesellschaft Geest und Portig K.-G., Leipzig, 1991), p. 268

  19. I.P. Kaminow, E.H. Turner, R.L. Barns, J.L. Bernstein, J. Appl. Phys. 51, 4379 (1980)

    Article  ADS  Google Scholar 

  20. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, L. Sarger, J. Opt. Soc. Am. B 22, 2138 (2005)

    Article  ADS  Google Scholar 

  21. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, A. Tünnermann, Opt. Express 14, 2151 (2006)

    Article  ADS  Google Scholar 

  22. T. Gorelik, M. Will, S. Nolte, A. Tünnermann, U. Glatzel, Appl. Phys. A 76, 309 (2003)

    Article  ADS  Google Scholar 

  23. S. Nolte, J. Burghoff, M. Will, A. Tünnermann, Proc. SPIE 5340, 164 (2004)

    ADS  Google Scholar 

  24. K. Buse, Appl. Phys. B 64, 273 (1997)

    Article  ADS  Google Scholar 

  25. U. Schlarb, K. Betzler, Phys. Rev. B 48, 15613 (1993)

    Article  ADS  Google Scholar 

  26. P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation (University Press, Cambridge, 1994), p. 209

    Google Scholar 

  27. A. Muir, G. Daniell, C. Please, I. Wellington, S. Mailis, R. Eason, Appl. Phys. A 83, 389 (2006)

    Article  ADS  Google Scholar 

  28. J. Rams, J. Olivares, P.J. Chandler, P.D. Townsend, J. Appl. Phys. 87, 3199 (2000)

    Article  ADS  Google Scholar 

  29. H. Åhlfeldt, J. Webjörn, P.A. Thomas, S.J. Teat, J. Appl. Phys. 77, 4467 (1995)

    Article  ADS  Google Scholar 

  30. V.V. Atuchin, Nucl. Instrum. Methods Phys. Res. B 168, 498 (2000)

    Article  ADS  Google Scholar 

  31. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, D.-Y. Shen, Appl. Opt. 40, 3759 (2001)

    ADS  Google Scholar 

  32. J. Rams, J. Olivares, P.J. Chandler, P.D. Townsend, J. Appl. Phys. 84, 5180 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Burghoff.

Additional information

PACS

61.80.Ba; 77.84.Dy; 42.82.Et; 42.65.Re

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burghoff, J., Hartung, H., Nolte, S. et al. Structural properties of femtosecond laser-induced modifications in LiNbO3 . Appl. Phys. A 86, 165–170 (2007). https://doi.org/10.1007/s00339-006-3750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3750-6

Keywords

Navigation