Skip to main content
Log in

Giant dielectric behavior and electrical properties of Ca1−3x/2Lu x Cu3Ti4O12 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Giant dielectric behavior and electrical properties of Ca1−3x/2Lu x Cu3Ti4O12 ceramics were studied by focusing on the influences of Lu3+ doping on their microstructure and electrical properties. The mean grain size of CaCu3Ti4O12 was greatly reduced as the dopant content was increased to 15 at.% (x = 0.15), which was ascribed to the effect of solute drag. X-ray absorption near-edge structure confirmed the presence of Ti3+ ions in Ca1−3x/2Lu x Cu3Ti4O12 ceramics. The ratio of Ti3+/Ti4+ in CaCu3Ti4O12 was reduced by Lu3+ doping. Dielectric permittivity (ε′) decreased with increasing Lu3+ content, which was ascribed to reduce grain boundary capacitance caused by the presence of Lu3+. Activation energies for conduction in the grain interiors and at the grain boundaries were slightly changed with Lu3+ content. Interestingly, improved dielectric properties with ε′ ~3.56 × 104 and tanδ ~0.059 at 1 kHz in the Ca0.925Lu0.05Cu3Ti4O12 ceramic were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  ADS  Google Scholar 

  2. S. Guillemet-Fritsch, T. Lebey, M. Boulos, B. Durand, J. Eur. Ceram. Soc. 26, 1245 (2006)

    Article  Google Scholar 

  3. S.-H. Hong, D.-Y. Kim, H.-M. Park, Y.-M. Kim, J. Am. Ceram. Soc. 90, 2118 (2007)

    Article  Google Scholar 

  4. K.-M. Kim, S.-J. Kim, J.-H. Lee, D.-Y. Kim, J. Eur. Ceram. Soc. 27, 3991 (2007)

    Article  Google Scholar 

  5. L. Liu, H. Fan, P. Fang, X. Chen, Mater. Res. Bull. 43, 1800 (2008)

    Article  Google Scholar 

  6. Y. Liu, Q. Chen, X. Zhao, J. Mater. Sci. Mater. Electron. 25, 1547 (2014)

    Article  Google Scholar 

  7. M. Ahmad, E. Al-Libidi, A. Al-Jaafari, S. Ghazanfar, K. Yamada, Appl. Phys. A 116, 1299 (2014)

    Article  ADS  Google Scholar 

  8. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  9. P. Lunkenheimer, R. Fichtl, S. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102 (2004)

    Article  ADS  Google Scholar 

  10. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  ADS  Google Scholar 

  11. Y. Zhu, J. Zheng, L. Wu, A. Frenkel, J. Hanson, P. Northrup, W. Ku, Phys. Rev. Lett. 99, 037602 (2007)

    Article  ADS  Google Scholar 

  12. L. Ni, X.M. Chen, J. Am. Ceram. Soc. 93, 184 (2010)

    Article  Google Scholar 

  13. W.C. Ribeiro, E. Joanni, R. Savu, P.R. Bueno, Solid State Commun. 151, 173 (2011)

    Article  ADS  Google Scholar 

  14. C.H. Kim, Y.H. Jang, S.J. Seo, C.H. Song, J.Y. Son, Y.S. Yang, J.H. Cho, Phys. Rev. B 85, 245210 (2012)

    Article  ADS  Google Scholar 

  15. S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Nat. Mater. 3, 774 (2004)

    Article  ADS  Google Scholar 

  16. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313 (2012)

    Article  Google Scholar 

  17. A.R. West, T.B. Adams, F.D. Morrison, D.C. Sinclair, J. Eur. Ceram. Soc. 24, 1439 (2004)

    Article  Google Scholar 

  18. A.A. Felix, M.O. Orlandi, J.A. Varela, Solid State Commun. 151, 1377 (2011)

    Article  ADS  Google Scholar 

  19. D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999)

    Article  Google Scholar 

  20. M. Li, X.L. Chen, D.F. Zhang, W.Y. Wang, W.J. Wang, Sens. Actuators B Chem. 147, 447 (2010)

    Article  Google Scholar 

  21. Z. Li, H. Fan, Solid State Ionics 192, 682 (2011)

    Article  Google Scholar 

  22. R. Parra, R. Savu, L.A. Ramajo, M.A. Ponce, J.A. Varela, M.S. Castro, P.R. Bueno, E. Joanni, J. Solid State Chem. 183, 1209 (2010)

    Article  ADS  Google Scholar 

  23. A.E. Smith, T.G. Calvarese, A.W. Sleight, M.A. Subramanian, J. Solid State Chem. 182, 409 (2009)

    Article  ADS  Google Scholar 

  24. L. Singh, U.S. Rai, K.D. Mandal, A. Rai, Appl. Phys. A 112, 891 (2013)

    Article  ADS  Google Scholar 

  25. Y. Wang, L. Ni, X.M. Chen, J. Mater. Sci. Mater. Electron. 22, 345 (2011)

    Article  Google Scholar 

  26. R. Kashyap, O.P. Thakur, R.P. Tandon, Ceram. Int. 38, 3029 (2012)

    Article  Google Scholar 

  27. H.A. Ardakani, M. Alizadeh, R. Amini, M.R. Ghazanfari, Ceram. Int. 38, 4217 (2012)

    Article  Google Scholar 

  28. P. Thongbai, J. Jumpatam, T. Yamwong, S. Maensiri, J. Eur. Ceram. Soc. 32, 2423 (2012)

    Article  Google Scholar 

  29. J. Boonlakhorn, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Alloys Compd. 612, 103 (2014)

    Article  Google Scholar 

  30. D. Xu, B. Wang, Y. Lin, L. Jiao, H. Yuan, G. Zhao, X. Cheng, Phys B 407, 2385 (2012)

    Article  ADS  Google Scholar 

  31. M. Newville, J. Synchrotron Radiat. 8, 96 (2001)

    Article  Google Scholar 

  32. B. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537 (2005)

    Article  Google Scholar 

  33. M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)

    Article  ADS  Google Scholar 

  34. R.D. Shannon, Acta Cryst. A32, 751 (1976)

    Article  Google Scholar 

  35. B. Shri Prakash, K.B.R. Varma, J. Mater. Sci.: Mater. Electron 17, 899 (2006)

    Google Scholar 

  36. W. Yuan, J. Phys. D Appl. Phys. 42, 175401 (2009)

    Article  ADS  Google Scholar 

  37. L. Marchin, S. Guillemet-Fritsch, B. Durand, A.A. Levchenko, A. Navrotsky, T. Lebey, J. Am. Ceram. Soc. 91, 485 (2008)

    Article  Google Scholar 

  38. J. Liu, C.-G. Duan, W.-G. Yin, W. Mei, R. Smith, J. Hardy, Phys. Rev. B 70, 144106 (2004)

    Article  ADS  Google Scholar 

  39. S. De Almeida-Didry, C. Autret, A. Lucas, C. Honstettre, F. Pacreau, F. Gervais, J. Eur. Ceram. Soc. 34, 3649 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Synchrotron Light Research Institute (BL5.2) (Public Organization), Nakhon Ratchasima, Thailand, for XANES measurements. This work was financially supported by the Thailand Research Fund (TRF) under the TRF Senior Research Scholar [Grant Number RTA5680008]. J. Boonlakhorn would like to thank the Faculty of Science, Khon Kaen University, for his Master of Science Degree scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pinit Kidkhunthod or Prasit Thongbai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonlakhorn, J., Kidkhunthod, P., Putasaeng, B. et al. Giant dielectric behavior and electrical properties of Ca1−3x/2Lu x Cu3Ti4O12 ceramics. Appl. Phys. A 120, 89–95 (2015). https://doi.org/10.1007/s00339-015-9172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9172-6

Keywords

Navigation