Skip to main content
Log in

Efficiency enhancement of InGaN/GaN multiple quantum wells with graphene layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, a novel hybrid graphene/InGaN-based multiple quantum wells (MQWs) structure has been fabricated. Compared to the sample conventional structure (CS), the utilization of graphene transferred on top GaN layer significantly enhances the internal quantum efficiency and relatively photoluminescence intensity. Furthermore, the excitons in the MQWs of sample hybrid structure (HS) have a shorter decay lifetime of 3.4 ns than that of 6.7 ns for sample CS. These results are probably attributed to the free carriers in the graphene layer, which can screen the piezoelectric field in the active region and thus present a free quantum-confined Stark effect-like behavior. Our work demonstrates that the graphene on the top GaN layer can effectively increase the recombination rate in sample HS, which may further improve LEDs’ performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F.A. Ponce, D.P. Bour, Nature 386, 351–359 (1997)

    Article  ADS  Google Scholar 

  2. E.F. Schubert, J.K. Kim, H. Luo, J.Q. Xi, Rep. Prog. Phys. 69, 3069–3099 (2006)

    Article  ADS  Google Scholar 

  3. S. Nakamura, N. Senoh, N. Iwasa, S.I. Nagahama, Jpn. J. Appl. Phys. Part 2 Lett. 34, L797–L799 (1995)

    Article  Google Scholar 

  4. A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck, J. Appl. Phys. 100, 023522 (2006)

    Article  ADS  Google Scholar 

  5. P.C. Tsai, Y.K. Su, W.R. Chen, C.Y. Huang, Jpn. J. Appl. Phys. 49, 04DG07 (2010)

    Google Scholar 

  6. L. Wang, R. Li, Z.W. Yang, L. Ding, T. Yu, N.Y. Liu, L. Liu, W.H. Chen, X.D. Hu, Appl. Phys. Lett. 95, 211104 (2009)

    Article  ADS  Google Scholar 

  7. Y.A. Chang, Y.T. Kuo, J.Y. Chang, Y.K. Kuo, Opt. Lett. 37, 2205–2207 (2012)

    Article  ADS  Google Scholar 

  8. R.A. Arif, Y.K. Ee, N. Tansu, Appl. Phys. Lett. 91, 091110 (2007)

    Article  ADS  Google Scholar 

  9. H.P. Zhao, G.Y. Liu, X.H. Li, G.S. Huang, J.D. Poplawsky, S.T. Penn, V. Dierolf, N. Tansu, Appl. Phys. Lett. 95, 061104 (2009)

    Article  ADS  Google Scholar 

  10. M.E. Aumer, S.F. LeBoeuf, B.F. Moody, S.M. Bedair, Appl. Phys. Lett. 79, 3803–3805 (2001)

    Article  ADS  Google Scholar 

  11. M.H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Appl. Phys. Lett. 91, 183507 (2007)

    Article  ADS  Google Scholar 

  12. Y.M. Park, J.K. Son, H.J. Chung, C. Sone, Y. Park, Appl. Phys. Lett. 95, 231917 (2009)

    Article  ADS  Google Scholar 

  13. Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, H. Chen, Sci. Rep. 3, 3389 (2013)

    ADS  Google Scholar 

  14. T. Wang, H. Saeki, J. Bai, T. Shirahama, M. Lachab, S. Sakai, P. Eliseev, Appl. Phys. Lett. 76, 1737–1739 (2000)

    Article  ADS  Google Scholar 

  15. R. Smith, B. Liu, J. Bai, T. Wang, Nano Lett. 13, 3042–3047 (2013)

    Article  ADS  Google Scholar 

  16. M. Achermann, M.A. Petruska, S. Kos, D.L. Smith, D.D. Koleske, V.I. Klimov, Nature 429, 642–646 (2004)

    Article  ADS  Google Scholar 

  17. G. Heliotis, G. Itskos, R. Murray, M.D. Dawson, I.M. Watson, D.D.C. Bradley, Adv. Mater. 18, 334–338 (2006)

    Article  Google Scholar 

  18. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Nat. Mater. 3, 601–605 (2004)

    Article  ADS  Google Scholar 

  19. F.H.L. Koppens, D.E. Chang, F.J.G. de Abajo, Nano Lett. 11, 3370–3377 (2011)

    Article  Google Scholar 

  20. L.B. Gao, W.C. Ren, H.L. Xu, L. Jin, Z.X. Wang, T. Ma, L.P. Ma, Z.Y. Zhang, Q. Fu, L.M. Peng, X.H. Bao, H.M. Cheng, Nat. Commun. 3, 699 (2012)

    Article  ADS  Google Scholar 

  21. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  22. A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30–35 (2009)

    Article  ADS  Google Scholar 

  23. S.F. Chichibu, K. Hazu, Y. Ishikawa, M. Tashiro, H. Namita, S. Nagao, K. Fujito, A. Uedono, J. Appl. Phys. 111, 103518 (2012)

    Article  ADS  Google Scholar 

  24. J.H. Na, R.A. Taylor, K.H. Lee, T. Wang, A. Tahraoui, P. Parbrook, A.M. Fox, S.N. Yi, Y.S. Park, J.W. Choi, J.S. Lee, Appl. Phys. Lett. 89, 253120 (2006)

    Article  ADS  Google Scholar 

  25. Y.L. Li, R. Huang, Y.H. Lai, Appl. Phys. Lett. 91, 181113 (2007)

    Article  ADS  Google Scholar 

  26. S.C. Ling, T.C. Lu, S.P. Chang, J.R. Chen, H.C. Kuo, S.C. Wang, Appl. Phys. Lett. 96, 231101 (2010)

    Article  ADS  Google Scholar 

  27. F.D. Sala, A.D. Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, J. Jancu, Appl. Phys. Lett. 74, 2002 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (Grant Nos. 2011CB925604) and National Nature Science Foundation (Grant Nos. 11204360, 61210014 and 11374340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Li, Z., Jiang, Y. et al. Efficiency enhancement of InGaN/GaN multiple quantum wells with graphene layer. Appl. Phys. A 119, 1209–1213 (2015). https://doi.org/10.1007/s00339-015-9176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9176-2

Keywords

Navigation