Skip to main content
Log in

Catalyst patterning methods for surface-bound chemical vapor deposition of carbon nanotubes

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present three different catalyst preparation and patterning techniques for plasma-enhanced chemical vapor deposition of carbon nanostructures from acetylene and ammonia mixtures. The different merits and potential areas of application are highlighted for each technique as compared to the benchmark of e-beam-lithography patterning. Maskless, focused ion beam written Pt can nucleate aligned carbon nanofibers, thereby allowing a sub-100 nm lateral resolution on non-planar substrate geometries combined with an in-situ monitoring. Ion beam milling additionally enables the pre-shaping and marking of the substrate, which is shown for the growth of individual nanofibers on the apex of commercial scanning probe tips. Pulsed electrochemical deposition was used to form Ni and Fe catalyst islands of controlled size and density. This is also demonstrated on complex substrate geometries such as carbon cloth. Nanocontact printing was employed to deposit a highly purified Co colloid in regular patterns with feature sizes down to 100 nm onto silicon wafers for low cost patterning over large areas. We analyze the catalyst restructuring upon exposure to elevated temperatures for each technique and relate this to the nucleated nanofiber dimensions and array densities. The flexibility in catalyst and substrate material allows a transfer of our achievements to catalyst-assisted growth of nanostructures in general facilitating their hierarchical device integration and future application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Terrones M (2003) Annu Rev Mater Res 33:419

    Article  Google Scholar 

  2. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) Adv Mater 15:353

    Article  Google Scholar 

  3. Iijima S (1991) Nature 354:56

    Article  ADS  Google Scholar 

  4. Morales AM, Lieber CM (1998) Science 279:208

    Article  PubMed  ADS  Google Scholar 

  5. Hofer LJE, Sterling E, McCartney JT (1955) J Phys Chem 59:1153

    Article  Google Scholar 

  6. Wagner RS, Ellis WC (1964) Appl Phys Lett 4:89

    Article  ADS  Google Scholar 

  7. Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998) Nature 395:878

    Article  ADS  Google Scholar 

  8. Hiruma K, Yazawa M, Haraguchi K, Ogawa K, Katsuyama T, Koguchi M, Kakibayashi H (1993) J Appl Phys 74:3162

    Article  ADS  Google Scholar 

  9. Peng HB, Ristroph TG, Schurmann GM, King GM, Yoon J, Narayanamurti V, Golovchenko JA (2003) Appl Phys Lett 83:4238

    Article  ADS  Google Scholar 

  10. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Science 282:1105

    Article  PubMed  ADS  Google Scholar 

  11. Yasin S, Hasko DG, Ahmed H (2001) Appl Phys Lett 78:2760

    Article  ADS  Google Scholar 

  12. Hofmann S, Ducati C, Neill RJ, Piscanec S, Ferrari AC, Geng J, Dunin-Borkowski RE, Robertson J (2003) J Appl Phys 94:6005

    Article  ADS  Google Scholar 

  13. Colli A, Hofmann S, Ferrari AC, Ducati C, Martelli F, Rubini S, Cabrini S, Franciosi A, Robertson J (2005) Appl Phys Lett 86:153103

    Article  ADS  Google Scholar 

  14. Hofmann S, Ducati C, Robertson J, Kleinsorge B (2003) Appl Phys Lett 83:135

    Article  ADS  Google Scholar 

  15. Tu Y, Huang ZP, Wang DZ, Wen JG, Ren ZF (2002) Appl Phys Lett 80:4018

    Article  ADS  Google Scholar 

  16. Hofmann S, Cantoro M, Kleinsorge B, Casiraghi C, Parvez A, Robertson J, Ducati C (2005) J Appl Phys 98:034308

    Article  ADS  Google Scholar 

  17. Ago H, Komatsu T, Ohshima S, Kuriki Y, Yumura M (2000) Appl Phys Lett 77:79

    Article  ADS  Google Scholar 

  18. Kleinsorge B, Golovko VB, Hofmann S, Geng J, Jefferson D, Robertson J, Johnson BFG (2004) Chem Commun 12:1416

    Article  PubMed  Google Scholar 

  19. Li HW, Muir BVO, Fichet G, Huck WTS (2003) Langmuir 19:1963

    Article  Google Scholar 

  20. Golovko VB, Li HW, Kleinsorge B, Hofmann S, Geng J, Cantoro M, Yang Z, Jefferson D, Johnson BFG, Huck WTS, Robertson J (2005) Nanotechnology 16:1636

    Article  ADS  Google Scholar 

  21. Chen JP, Lee KM, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1994) J Appl Phys 75:5876

    Article  ADS  Google Scholar 

  22. Dinega DP, Bawendi MG (1999) Angew Chem Int Edit 38:1788

    Article  Google Scholar 

  23. Telari KA, Rogers BR, Fang H, Shen L, Weller RA, Braski DN (2002) J Vac Sci Technol B 20:590

    Article  Google Scholar 

  24. Tao T, Ro JS, Melngailis J, Xue ZL, Kaesz HD (1990) J Vac Sci Technol B 8:1826

    Article  Google Scholar 

  25. Lide DR (1998) CRC handbook of chemistry and physics, 79th ed. CRC, Boca Raton, FL

    Google Scholar 

  26. Reyntjens S, Puers R (2001) J Micromech Microeng 11:287

    Article  Google Scholar 

  27. Wen JM, Evans JW, Bartelt MC, Burnett JW, Thiel PA (1996) Phys Rev Lett 76:652

    Article  PubMed  ADS  Google Scholar 

  28. Jiran E, Thompson CV (1990) J Electron Mater 19:1153

    Article  ADS  Google Scholar 

  29. Bower CA, Zhou O, Zhu Wei, Werder DJ, Sungho J (2000) Appl Phys Lett 77:2767

    Article  ADS  Google Scholar 

  30. Lisowski W, Keim EG, Smithers M (2002) Appl Surf Sci 189:148

    Article  ADS  Google Scholar 

  31. Huang ZP, Wu JW, Ren ZF, Wang JH, Siegal MP, Provencio PN (1998) Appl Phys Lett 73:3845

    Article  ADS  Google Scholar 

  32. Hofmann S, Kleinsorge B, Ducati C, Ferrari AC, Robertson J (2004) Diam Relat Mater 13:1171

    Article  Google Scholar 

  33. Wang C, Waje M, Wang X, Tang JM, Haddon RC, Yan YS (2004) Nano Lett 4:345

    Article  Google Scholar 

  34. Hofmann S, Csanyi G, Ferrari AC, Payne MC, Robertson J (2005) Phys Rev Lett 95:036101

    Article  PubMed  ADS  Google Scholar 

  35. Han JH, Choi SH, Lee TY, Yoo JB, Park CY, Jung T, Yu SG, Yi W, Han IT, Kim JM (2003) Diam Relat Mater 12:878

    Article  Google Scholar 

  36. Buckmaster R, Hanada T, Kawazoe Y, Cho MW, Yao TF, Urushihara N, Yamamoto A (2005) Nano Lett 5:771

    Article  PubMed  Google Scholar 

  37. Dai HJ, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nature 384:147

    Article  ADS  Google Scholar 

  38. Wade LA, Shapiro IR, Ma ZY, Quake SR, Collier CP (2004) Nano Lett 4:725

    Article  Google Scholar 

  39. Cui HT, Yang XJ, Simpson ML, Lowndes DH, Varela M (2004) Appl Phys Lett 84:4077

    Article  ADS  Google Scholar 

  40. Romanikow LT, Palumbo PT (1988) Electrodeposition Technology, Theory and Practice. Electrochemical Society, Pennington

    Google Scholar 

  41. Pearson PC, Moffat PT (1994) Crit Rev Surf Chem 3:171

    Google Scholar 

  42. Scheck C, Evans P, Schad R, Zangari G, Sorba L, Biasiol G, Heun S (2005) Appl Phys Lett 86:133108

    Article  ADS  Google Scholar 

  43. Penner RM (2002) J Phys Chem B 106:3339

    Article  Google Scholar 

  44. Day TM, Unwin PR, Wilson NR, Macpherson JV (2005) J Am Chem Soc 127:10639

    Article  PubMed  Google Scholar 

  45. Mallory GO, Hajdu JB (1990) Electroless Plating: Fundamentals and Applications. AESF, Orlando

    Google Scholar 

  46. Liebau M, Unger E, Duesberg GS, Graham AP, Seidel R, Kreupl F, Hoenlein W (2003) Appl Phys A 77:731

    Article  ADS  Google Scholar 

  47. Jansson A, Thornell G, Johansson S (2000) J Electrochem Soc 147:1810

    Article  Google Scholar 

  48. Chang YJ, Erskine JL (1982) Phys Rev B 26:4766

    Article  ADS  Google Scholar 

  49. Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Norskov JK (2004) Nature 427:426

    Article  PubMed  ADS  Google Scholar 

  50. Baker RTL, Barber MA (1978) In: Walker PL, Thrower PA (eds) Chemistry and Physics of Carbon, Vol 14. Dekker, New York

  51. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Science 306:1362

    Article  PubMed  ADS  Google Scholar 

  52. Fan YW, Burghard M, Kern K (2002) Adv Mater 14:130

    Article  Google Scholar 

  53. Ebbesen TW, Hiura H, Bisher ME, Treacy MMJ, Shreeve-Keyer JL, Haushalter RC (1996) Adv Mater 8:155

    Article  Google Scholar 

  54. Yu RQ, Chen LW, Liu QP, Lin JY, Tan KL, Ng SC, Chan HSO, Xu GQ, Hor TSA (1998) Chem Mater 10:718

    Article  Google Scholar 

  55. Unger E, Duesberg GS, Liebau M, Graham AP, Seidel R, Kreupl F, Hoenlein W (2003) Appl Phys A 77:735

    Article  ADS  Google Scholar 

  56. Cantoro M, Golovko VB, Hofmann S, Williams DR, Ducati C, Geng J, Boskovic BO, Kleinsorge B, Jefferson D, Ferrari AC, Johnson BFG, Robertson J (2005) Diam Relat Mater 14:733

    Article  Google Scholar 

  57. Li HW, Kang DJ, Blamire MG, Huck WTS (2003) Nanotechnology 14:220

    Article  ADS  Google Scholar 

  58. Xia YN, Whitesides GM (1996) Adv Mater 8:765

    Article  Google Scholar 

  59. Sato T, Hasko DG, Ahmed H (1997) J Vac Sci Technol B 15:45

    Article  Google Scholar 

  60. Hua F, Sun YG, Gaur A, Meitl MA, Bilhaut L, Rotkina L, Wang JF, Geil P, Shim M, Rogers JA, Shim A (2004) Nano Lett 4:2467

    Article  Google Scholar 

  61. Cheung CL, Kurtz A, Park H, Lieber CM (2002) J Phys Chem B 106:2429

    Article  Google Scholar 

  62. Bartelt NC, Theis W, Tromp RM (1996) Phys Rev B 54:11741

    Article  Google Scholar 

  63. Choi JH, Choi SH, Han JH, Yoo JB, Park CY, Jung T, Yu SG, Han IT, Kim JM (2003) J Appl Phys 94:487

    Article  ADS  Google Scholar 

  64. Glerup M, Castignolles M, Holzinger M, Hug G, Loiseau A, Bernier P (2003) Chem Commun 20:2542

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hofmann.

Additional information

PACS

81.16.Rf; 81.16.Hc; 61.46.+w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, S., Cantoro, M., Kaempgen, M. et al. Catalyst patterning methods for surface-bound chemical vapor deposition of carbon nanotubes. Appl. Phys. A 81, 1559–1567 (2005). https://doi.org/10.1007/s00339-005-3338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3338-6

Keywords

Navigation