Skip to main content
Log in

On the thermodynamic size limit of nanowires grown by the vapor-liquid-solid process

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

For nanowires grown by the vapor-liquid-solid (VLS) process, expressions of the thermodynamically allowed minimum sizes of the nanowire and the liquid phase droplet as functions of the relevant thermodynamic variables have been obtained using Si nanowires (SiNW) grown from metal-silicon (M-Si) systems as the model case. In these expressions the binary nature of the M-Si system, which involves four phases of materials, is accounted for. The liquid droplet minimum size is determined by a unique set of the external M and Si vapor phase pressure values. The SiNW minimum size expression contains two contributions, one due to the liquid droplet composition and one due to the droplet size. These expressions do not predict a limit on the attainable VLS SiNW minimum size, implying ever smaller SiNW can be grown until reaching some growth kinetic limit which is presently unknown. A set of size data of the smallest experimentally grown SiNW appears to have approached an effective limit set by the liquid composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Lieber: Sci. Amer., Sept., 2001, p.58

  2. R.F. Seervice: Sci. 294, 2442 (2001)

    Article  Google Scholar 

  3. T.Y. Tan, N. Li, U. Gösele: Appl. Phys. Lett. 83, 1199 (2003)

    Article  Google Scholar 

  4. R.S. Wagner, W.C. Ellis: Trans. Met. Soc. 233, 1053 (1965)

    Google Scholar 

  5. A.M. Morales, C.M. Lieber: Sci. 279, 208 (1998)

    Article  Google Scholar 

  6. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber: Appl. Phys. Lett. 78, 2214 (2001)

    Article  Google Scholar 

  7. S. Fan, J. Cao, H. Dang, Q. Gu, J. Zhao: Mat. Sci. Eng. C 15, 295 (2001)

    Article  Google Scholar 

  8. L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber: Nature 420, 57 (2002)

    Article  Google Scholar 

  9. Z.Q. Liu, W.Y. Zhou, L.F. Sun, D.S. Tang, X.P. Zou, Y.B. Li, C.Y. Wang, G. Wang, S.S. Xie: Chem. Phys. Lett. 341, 523 (2001)

    Article  Google Scholar 

  10. H.Z. Zhang, D.P. Yu, Y. Ding, Z.G. Bai, Q.L. Huang, S.Q. Feng: Appl. Phys. Lett. 73, 3396 (1998)

    Google Scholar 

  11. S.Q. Feng, D.P. Yu, H.Z. Zhang, Z.G. Bai, Y. Ding: J. Cryst. Growth 209, 513 (2000)

    Article  Google Scholar 

  12. Q. Gu, H. Dang, J. Cao, J. Zhao, S. Fan: Appl. Phys. Lett. 76, 3020 (2000)

    Article  Google Scholar 

  13. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, S.T. Lee: J. Cryst. Growth 197, 136 (1999)

    Article  Google Scholar 

  14. N. Wang, Y.F. Zhang, Y.H. Tang, C.S. Lee, S.T. Lee: Appl. Phys. Lett. 73, 3902 (1998)

    Google Scholar 

  15. T.Y. Tan: Mat. Sci. Eng. B 10, 227 (1991)

    Article  Google Scholar 

  16. E.I. Givargizov: Highly Anisotropic Crystals, Reidel, Boston (1986)

  17. T.B. Massalski, H. Okamoto, P.R. Subramian, L. Kacprzak (Eds.): Binary Alloy Phase Diagrams, 2nd ed. (ASM Int.) 1, 430 (Au–Si); 2, 1772 (Fe–Si) (1990)

  18. Z.R. Dai, Z.W. Pan, Z.L. Wang: Adv. Funct. Mater. 13, 9 (2003)

    Article  MATH  Google Scholar 

  19. R.S. Roth, J.R. Dennis, H.F. McMurdie (Eds.): Phase Diagrams For Ceramists, The Amer. Cer. Soc. VI, 49 (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.Y. Tan.

Additional information

PACS

81.07b; 61.46+w; 61.25Mv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, T., Li, N. & Gösele, U. On the thermodynamic size limit of nanowires grown by the vapor-liquid-solid process. Appl Phys A 78, 519–526 (2004). https://doi.org/10.1007/s00339-003-2380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2380-5

Keywords

Navigation