Skip to main content
Log in

Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The temperature and carrier-trapping effects on the electrical characteristics of a 4H silicon carbide (4H-SiC) metal–oxide–semiconductor field effect transistor (MOSFET) dimensioned for a low breakdown voltage (BVDS) are investigated. Firstly, the impact of the temperature is evaluated referring to a fresh device (defects-free). In particular, the threshold voltage (Vth), channel mobility (µch), and on-state resistance (RON) are calculated in the temperature range of 300 K to 500 K starting from the device current–voltage characteristics. A defective MOSFET is then considered. A combined model of defect energy levels inside the 4H-SiC bandgap (deep and tail centers) and oxide-fixed traps is taken into account referring to literature data. The simulation results show that the SiO2/4H-SiC interface traps act to increase RON, reduce µch, and increase the sensitivity of Vth with temperature. In more detail, the deep-level traps in the mid-gap have a limited effect in determining RON once the tail traps contributions have been introduced. Also, for gate biases greater than about 2Vth (i.e., VGS > 12 V) the increase of mobile carriers in the inversion layer leads to an increased screening of traps which enhances the MOSFET output current limiting the RON increase in particular at low temperatures. Finally, a high oxide-fixed trap density meaningfully influences Vth (negative shifting) and penalizes the device drain current over the whole explored voltage range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.J. Baliga, Silicon carbide power devices (World Scientific, Singapore, 2005)

    Google Scholar 

  2. ROHM Model SCT2H12NZ (1700V), http://www.rohm.com/web/eu/products/-/product/SCT2H12NZ. Accessed 10 Jan 2019

  3. CREE Model C3M0280090D (900V), http://www.wolfspeed.com/c3m0280090d. Accessed 10 Jan 2019

  4. ROHM Model SCT3017AL (650V) http://www.rohm.com/web/eu/products/-/product/SCT3017AL. Accessed 10 Jan 2019

  5. F.G. Della Corte, G. De Martino, F. Pezzimenti, G. Adinolfi, G. Graditi, IEEE Trans. Electron Dev 65, 3352–3360 (2018)

    Article  ADS  Google Scholar 

  6. G. De Martino, F. Pezzimenti, F. G. Della Corte, G. Adinolfi, G. Graditi, in Proceedings of the IEEE International Conference on Ph. D. Research in Microelectronics and Electronics—PRIME, pp. 221–224 (2017)

  7. O. Khan, W. Xiao, M. Shawky El Moursi, I.E.E.E. Trans, Power Electron. 32, 3278–3284 (2017)

    Article  Google Scholar 

  8. H. Zhou, J. Zhao, Y. Han, I.E.E.E. Trans, Power Electron. 30, 3479–3487 (2015)

    Article  Google Scholar 

  9. G. De Martino, F. Pezzimenti, F. G. Della Corte, in Proceedings of the International Semiconductor Conference—CAS, pp. 147–150 (2018)

  10. Y. Shi, R. Li, Y. Xue, H. Li, I.E.E.E. Trans, Power Electron. 31, 328–339 (2015)

    Article  Google Scholar 

  11. K. Tachiki, T. Ono, T. Kobayashi, H. Tanaka, I.E.E.E. Trans, Electron Dev. 65, 3077–3080 (2018)

    Article  ADS  Google Scholar 

  12. D.P. Ettisserry, N. Goldsman, A. Lelis, J. Appl. Phys. 115, 103706 (2014)

    Article  ADS  Google Scholar 

  13. J.M. Knaup, P. Deak, T. Frauenheim, A. Gali, Z. Hajnal, W.J. Choyke, Phys. Rev. 72, 115323 (2005)

    Article  Google Scholar 

  14. Y. Tanimoto, A. Saito, K. Matsuura, H. Kikuchihara, H.J. Mattausch, M. Miura-Mattausch, N. Kawamoto, I.E.E.E. Trans, Power Electron. 31, 4509–4516 (2016)

    Article  Google Scholar 

  15. W. Sung, B.J. Baliga, I.E.E.E. Electr, Device L. 37, 1605–1608 (2016)

    Article  Google Scholar 

  16. Y. Mikamura, K. Hiratsuka, T. Tsuno, H. Michikoshi, S. Tanaka, T. Masuda, T. Sekiguchi, I.E.E.E. Trans, Electron Dev. 62, 382–389 (2014)

    Article  ADS  Google Scholar 

  17. M. Okamoto, M. Iijima, T. Nagano, K. Fukuda, H. Okumura, Mater. Sci. Forum 717, 781–784 (2012)

    Article  Google Scholar 

  18. Silvaco Int., Atlas user’s manual, Device Simulator Software (2016)

  19. F. Pezzimenti, I.E.E.E. Trans, Electron Dev. 60, 1404–1411 (2013)

    Article  ADS  Google Scholar 

  20. F. Bouzid, L. Dehimi, F. Pezzimenti, M. Hadjab, A.H. Larbi, Superlattice. Microst. 122, 57–73 (2018)

    Article  ADS  Google Scholar 

  21. Y. Marouf, L. Dehimi, F. Bouzid, F. Pezzimenti, F.G. Della Corte, Optik 163, 22–32 (2018)

    Article  ADS  Google Scholar 

  22. F. Bouzid, F. Pezzimenti, L. Dehimi, M.L. Megherbi, F.G. Della Corte, Jpn. J. Appl. Phys. 56, 094301 (2017)

    Article  ADS  Google Scholar 

  23. F. Pezzimenti, F. G. Della Corte, in Proceedings of the Mediterranean Electrotechnical Conference—MELECON, pp. 1129–1134 (2010)

  24. F. Bouzid, L. Dehimi, F. Pezzimenti, J. Electron. Mater. 46, 6563–6570 (2017)

    Article  ADS  Google Scholar 

  25. M.L. Megherbi, F. Pezzimenti, L. Dehimi, M.A. Saadoune, F.G. Della Corte, IEEE Trans. Electron Dev. 65, 3371–3378 (2018)

    Article  ADS  Google Scholar 

  26. K. Zeghdar, L. Dehimi, F. Pezzimenti, S. Rao, F.G. Della Corte, Jpn. J. Appl. Phys. 58, 014002 (2019)

    Article  ADS  Google Scholar 

  27. F.G. Della Corte, F. Pezzimenti, S. Bellone, R. Nipoti, Mater. Sci. Forum. 679, 621–624 (2011)

    Article  Google Scholar 

  28. F. Pezzimenti, S. Bellone, F.G. Della Corte, R. Nipoti, Mater. Sci. Forum. 740, 942–945 (2013)

    Article  Google Scholar 

  29. F. Pezzimenti, L. F. Albanese, S. Bellone, F. G. Della Corte, in Proceedings of the IEEE international conference on bipolar/BiCMOS circuits and technology meeting, pp. 214–217 (2009)

  30. M.L. Megherbi, F. Pezzimenti, L. Dehimi, A. Saadoune, F.G. Della Corte, J. Electron. Mater. 47, 1414–1420 (2018)

    Article  ADS  Google Scholar 

  31. M. Ruff, H. Mitlehner, R. Helbig, I.E.E.E. Trans, Electron Dev. 41, 1040–1054 (1994)

    Article  ADS  Google Scholar 

  32. S. Dhar, S. Haney, L. Cheng, S.R. Ryu, A.K. Agarwal, J. Appl. Phys. 108, 054509 (2010)

    Article  ADS  Google Scholar 

  33. S. Potbhare, N. Goldsman, G. Pennington, A. Lelis, J.M. McGarrity, J. Appl. Phys. 100, 044515 (2006)

    Article  ADS  Google Scholar 

  34. E.I. Dimitriadis, N. Archontas, D. Girginoudi, N. Georgoulas, Microelectron. Eng. 133, 120–128 (2015)

    Article  Google Scholar 

  35. X. Li, Y. Luo, L. Fursin, J.H. Zhao, M. Pan, P. Alexandrov, M. Weiner, Solid State Electron. 47, 233–239 (2003)

    Article  ADS  Google Scholar 

  36. M. Roschke, F. Schwierz, I.E.E.E. Trans, Electron Dev. 48, 1442–1447 (2001)

    Article  ADS  Google Scholar 

  37. B.J. Baliga, Fundamentals of power semiconductor devices (Springer, New York, 2008)

    Book  Google Scholar 

  38. F. Devynck, A. Alkauskas, P. Broqvist, A. Pasquarello, Phys. Rev. 84, 235320 (2011)

    Article  Google Scholar 

  39. J. Rozen, A.C. Ahyi, X. Zhu, J.R. Williams, L.C. Feldman, I.E.E.E. Trans, Electron Dev. 58, 3808–3811 (2011)

    Article  ADS  Google Scholar 

  40. A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H.E. Maes, U. Schwalke, I.E.E.E. Electr, Device L. 24, 87–89 (2003)

    Article  Google Scholar 

  41. S. Zafar, A. Callegari, E. Gusev, M.V. Fischetti, J. Appl. Phys. 93, 9298 (2003)

    Article  ADS  Google Scholar 

  42. S. Potbhare, N. Goldsman, G. Pennington, A. Lelis, J.M. McGarrity, J. Appl. Phys. 100, 044516 (2006)

    Article  ADS  Google Scholar 

  43. Infineon model IPB072N15N3 G (150V), https://www.infineon.com/cms/en/product/power/mosfet/20v-300v-n-channel-power-mosfet/120v-300v-n-channel-power-mosfet/ipb072n15n3-g/. Accessed 10 Jan 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pezzimenti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bencherif, H., Dehimi, L., Pezzimenti, F. et al. Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl. Phys. A 125, 294 (2019). https://doi.org/10.1007/s00339-019-2606-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2606-9

Navigation