Skip to main content
Log in

Low cost and compact wideband microwave notch filter based on miniaturized complementary metaresonator

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, low cost, small size and wideband microwave notch filter with good peak attenuation based on complementary circular spiral resonator (CCSR) is realized analytically, calculated numerically and verified experimentally. Fundamental frequency of the proposed filter is 2.47 GHz with notch depth − 13.89 dB and unloaded Q factor 49.4. The electrical size of CCSR structure is \(\lambda g/12\) which is very high level of miniaturization. The effects of resonator dimensions, substrate thickness and number of CCSR structures on resonance frequency, notch depth, bandwidth and unloaded Q factor are analyzed in detail. After optimization of different design parameters, an optimized filter is designed which has resonance frequency 2.47 GHz with notch depth − 52.38 dB and unloaded Q factor 83. To verify the concept, prototypes of first- and fourth-stage filters are fabricated and tested using vector network analyzer AV3672. Simulated and measured results are very close to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Sonehara, S. Yamaguchi, Y. Miyajima, T. Sato, T. Inomata, Y. Ono, Characterization of UHF band LC filter with RF spiral inductor using carbonyl iron powder/epoxy composite magnetic and chip capacitor. IEEE Trans. Magn. 53(11), 1–5 (2017)

    Article  Google Scholar 

  2. M. Luo, X. Xu, X.H. Tang, Y.H. Zhang, A compact balanced to balanced filtering gysel power divider using \(\lambda _g/2\) resonators and short stub loaded resonator. IEEE Microw. Wirel. Compon. Lett. 27(7), 645–647 (2017)

    Article  Google Scholar 

  3. D. Psychogiou, R. Gómez-García, Reflection-less adaptive RF filters, bandpass, bandstop and cascade designs. IEEE Trans. Microw. Theory Tech. 65(11), 4593–4605 (2017)

    Article  ADS  Google Scholar 

  4. D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, Hoboken, 2012), pp. 1–2

    Google Scholar 

  5. I.J. Bahl, D.K. Trivedi, A Designer’s Guide to Microstrip Line. Microwaves, pp. 174–182 (1977)

  6. F. Falcone, T. Lopetegi, M.A.G. Laso, J.D. Baena, J. Bonache, M. Beruete, R. Marque, F. Martin, M. Sorolla, Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93(19), 1–4 (2004)

    Article  Google Scholar 

  7. T.U. Haq, C.J. Ruan, S. Ullah, A. Kosar, Reconfigurable ultra wide band notch filter based on complementary metamaterial. In: IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), pp. 381–382 (2018)

  8. T.U. Haq, M.F. Khan, O.F. Siddiqui, Design and implementation of waveguide bandpass filter using complementary metaresonator. Appl. Phys. A 122(34), 1–5 (2015)

    Google Scholar 

  9. F. Falcone, T. Lopetegi, J.D. Baena, R. Marqués, F. Martín, M. Sorolla, Effective negative \(\epsilon \) stop-band microstrip lines based on complementary split ring resonators. IEEE Microw. Wirel. Compon. Lett. 14(6), 280–282 (2004)

    Article  Google Scholar 

  10. J. Bonache, M. Gil, I. Gil, J. García-García, F. Martín, On the electrical characteristics of complementary metamaterial resonators. IEEE Microw. Wirel. Compon. Lett. 16(10), 543–545 (2006)

    Article  Google Scholar 

  11. J.D. Baena, J. Bonache, F. Martín, R. Marqués, F. Falcone, T. Lopetegi, M.A.G. Laso, J. García-García, I. Gil, M. Flores, M. Sorolla, Equivalent circuit models for split ring resonators and complementary split ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005)

    Article  ADS  Google Scholar 

  12. A.H. Sarhadi, A. Hashemi, H. Emami, Optimization of Q factor in complementary spiral resonator for RFID application. In; 21st Telecommunications forum (TELFOR), pp. 693–696 (2013)

  13. J. Choi, C. Talbi, High Q metamaterial interdigital transmission line based on complementary spiral resonators for low phase noise voltage-controlled oscillator. IET Circuits Devices Syst. 6(3), 168–175 (2012)

    Article  Google Scholar 

  14. I. Gil, R. Fernandez-Garcia, J. Balcells, Analysis and characterisation of coupled transmission lines loaded with complementary spiral resonators. IET Microw. Antennas Propag. 5(3), 290–297 (2011)

    Article  Google Scholar 

  15. L. Zhou, S. Liu, Y. Wei, Y. Chen, N. Gao, Dual-band circularly-polarised antenna based on complementary two turns spiral resonator. Electron. Lett. 46(14), 970–971 (2010)

    Article  Google Scholar 

  16. O. Isik, K.P. Esselle, Backward wave microstrip lines with complementary spiral resonators. IEEE Trans. Antennas Propag. 56(10), 3173–3178 (2008)

    Article  ADS  Google Scholar 

  17. E.A. Casu, A.A. Müller, M. Fernández-Bolaños, A. Fumarola, A. Krammer, A. Schüler, A.M. Ionescu, Vanadium oxide bandstop tunable filter for ka frequency bands based on a novel reconfigurable spiral shape defected ground plane CPW. IEEE Access 6, 12206–12212 (2018)

    Article  Google Scholar 

  18. X.Y. Zhang, C.J. Ruan, T.U. Haq, K.L. Chen, High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator. Sensors 19(787), 1–14 (2019)

    Google Scholar 

  19. T.U. Haq, C.J. Ruan, X.Y. Zhang, S. Ullah, Complementary metamaterial sensor for nondestructive evaluation of dielectric substrates. Sensors 19(2100), 1–14 (2019)

    Google Scholar 

  20. J. Hong, Microwave Filters for RF/Microwave Applications, 2nd edn. (Wiley, Hoboken, 2011), pp. 76–77

    Book  Google Scholar 

  21. F. Wan, N. Li, B. Ravelo, Q. Ji, B. Li, J. Ge, The design method of the active negative group delay circuits based on microwave amplifier and an RL-series network. IEEE Access, pp. 1–10 (2018)

  22. J.F. Woodley, M. Mojahedi, Negative group velocity and group delay in left-handed media. Phys. Rev. E 70(4), 1–6 (2004)

    Article  Google Scholar 

  23. A. Khanna, Y. Garault, Determination of loaded, unloaded, and external quality factors of a dielectric resonator coupled to a microstrip line. IEEE Trans. Microw. Theory Tech. 31(3), 261–264 (1983)

    Article  ADS  Google Scholar 

  24. J. García-García, F. Martín, E. Amat, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, M.A.G. Laso, A. Marcotegui, M. Sorolla, R. Marqués, Microwave filters with improved stop band based on sub-wavelength resonators. IEEE Trans. Microw. Theory Tech. 53(6), 1997–2006 (2005)

    Article  ADS  Google Scholar 

  25. V. Oznazi, V.B. Erturk, A comparative investigation of SRR and CSRR based band reject filters: simulation, experiments, and discussions. Microw. Opt. Technol. Lett. 50(2), 519–523 (2008)

    Article  Google Scholar 

  26. J.D. Ruiz, J. Hinojosa, A. Alvarez-Melcon, Microstrip notch filters based on open interconnected split ring resonators (OISRRs). Appl. Phys. A Solids Surf. 112, 263–267 (2013)

    Article  ADS  Google Scholar 

  27. J. Hinojosa, A. Saura-Rodenas, A. Alvarez Melcon, F.L. Martinez Viviente, Electronically tunable microstrip bandstop filters using a varactor loaded open ring resonator (VLORR). Appl. Phys. A Solids Surf. 123, 477–482 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunjun Ruan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, T., Ruan, C., Zhang, X. et al. Low cost and compact wideband microwave notch filter based on miniaturized complementary metaresonator. Appl. Phys. A 125, 662 (2019). https://doi.org/10.1007/s00339-019-2923-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2923-z

Navigation