Skip to main content
Log in

Adsorption of d-metal atoms on the regular MgO(001) surface: Density functional study of cluster models embedded in an elastic polarizable environment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Structure and bonding of complexes formed by 17 different single transition metal atoms (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; Cr, Mo, W) with oxygen sites of the regular MgO(001) surface were studied computationally. We employed an all-electron scalar-relativistic density functional method in combination with our novel scheme of cluster models embedded in an elastic polarizable environment that allows one to account for substrate relaxation. Even on a rigid substrate such as ideal MgO(001), adsorbate-induced relaxation noticeably affects structure and stability of surface complexes. For more reliable estimates, we calculated adsorption energies with two different gradient-corrected exchange-correlation functionals, BP86 and PBEN. More than one electron configuration was considered for metal atoms exhibiting high-spin states adsorption complexes. Within one group of the periodic table, 3d-atoms, in general, were found to adsorb more strongly than 4d-atoms, but weaker than 5d-atoms. In line with our previous studies of selected d-metal atoms adsorbed on oxides, the surface complexes considered did now show any indication of metal oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Schmid, M. Bäumle, M. Geerkens, I. Heim, C. Osemann, T. Sawitowski: Chem. Soc. Rev. 28, 179 (1999)

    Article  Google Scholar 

  2. C.R. Henry: Surf. Sci. Rep. 31, 231 (1998)

    Article  ADS  Google Scholar 

  3. U. Heiz, W.D. Schneider: Crit. Rev. Solid State Mat. Sci. 26, 251 (2001)

    Article  ADS  Google Scholar 

  4. G. Renaud: Surf. Sci. Rep. 32, 1 (1998)

    Article  ADS  Google Scholar 

  5. M. Bäumer, H.-J. Freund: Progr. Surf. Sci. 61, 127 (1999)

    Article  ADS  Google Scholar 

  6. H.J. Freund: Surf. Sci. 500, 271 (2002)

    Article  ADS  Google Scholar 

  7. Chemisorption and Reactivity on Supported Clusters and Thin Films, R.M. Lambert, G. Pacchioni (NATO ASI Series E, Vol. 331, Kluwer, Dordrecht 1997)

  8. N. Rösch, V.A. Nasluzov, K.M. Neyman, G. Pacchioni, G.N. Vayssilov: In Computational Material Science, Theoretical and Computational Chemistry Series, J. Leszczynski (Elsevier, Amsterdam 2004) p. 84, in press

  9. I. Yudanov, G. Pacchioni, K. Neyman, N. Rösch: J. Phys. Chem. B 101, 2786 (1997)

    Article  Google Scholar 

  10. A.D. Becke: Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  11. C. Lee, W. Yang, R.G. Parr: Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  12. B. Miehlich, A. Savin, H. Stoll, H. Preuss: Chem. Phys. Lett. 157, 200 (1989)

    Article  ADS  Google Scholar 

  13. A.V. Matveev, K.M. Neyman, I.V. Yudanov, N. Rösch: Surf. Sci. 426, 123 (1999)

    Article  ADS  Google Scholar 

  14. V.A. Nasluzov, V.V. Rivanenkov, A.B. Gordienko, K.M. Neyman, U. Birkenheuer, N. Rösch: J. Chem. Phys. 115, 8157 (2001)

    Article  ADS  Google Scholar 

  15. N. López, F. Illas: J. Phys. Chem. B 102, 1430 (1998)

    Article  Google Scholar 

  16. N. López, F. Illas, N. Rösch, G. Pacchioni: J. Chem. Phys. 110, 4873 (1999)

    Article  ADS  Google Scholar 

  17. S. Abbet, E. Riedo, H. Brune, U. Heiz, A.M. Ferrari, L. Giordano, G. Pacchioni: J. Am. Chem. Soc. 123, 6172 (2001)

    Article  Google Scholar 

  18. N. López, J.C. Paniagua, F. Illas: J. Chem. Phys. 117, 9445 (2002)

    Article  ADS  Google Scholar 

  19. A. Markovits, M.K. Skalli, C. Minot, G. Pacchioni, N. López, F. Illas: J. Chem. Phys. 115, 8172 (2001)

    Article  ADS  Google Scholar 

  20. V. Musolino, A. Selloni, R. Car: Surf. Sci. 402404, 413 (1998)

  21. A. Bogicevic, D.R. Jennison: Surf. Sci. 515, L481 (2002)

  22. I.V. Yudanov, V.A. Nasluzov, K.M. Neyman, N. Rösch: Int. J. Quantum Chem. 65, 975 (1997)

    Article  Google Scholar 

  23. K.M. Neyman, C. Inntam, V.A. Nasluzov, N. Rösch: unpublished

  24. B. Dunlap, N. Rösch: Adv. Quantum Chem. 21, 317 (1990)

    Article  ADS  Google Scholar 

  25. T. Belling, T. Grauschopf, S. Krüger, M. Mayer, F. Nörtemann, M. Staufer, C. Zenger, N. Rösch: In High Performance Scientific and Engineering Computing. Lec. Notes in Comput. Sci. Eng., Vol. 8, H.J. Bungartz, F. Durst, C. Zenger (Springer, Heidelberg 1999) p. 439

  26. T. Belling, T. Grauschopf, S. Krüger, F. Nörtemann, M. Staufer, M. Mayer, V.A. Nasluzov, U. Birkenheuer, A. Hu, A.V. Matveev, A.M. Shor, M.S.K. Fuchs-Rohr, K.M. Neyman, D.I. Ganyushin, T. Kerdcharoen, A. Woiterski, N. Rösch: ParaGauss, Version 2.2, Technische Universität München, 2001.

  27. J.P. Perdew: Phys. Rev. B 33, 8822 (1986); Phys. Rev. B 34, 7406 (1986)

    Article  ADS  Google Scholar 

  28. B. Hammer, L.B. Hansen, J.K. Nørskov: Phys. Rev. B 59, 7413 (1999)

    Article  ADS  Google Scholar 

  29. N. Rösch, S. Krüger, M. Mayer, V.A. Naslusov: In Recent Developments and Applications of Modern Density Functional Theory, J. Seminario (Elsevier, Amsterdam 1996) p. 497

  30. N. Rösch, A. Matveev, V.A. Nasluzov, K.M. Neyman, L. Moskaleva, S. Krüger: Relativistic Electronic Structure Theory – Applications, Theoretical Comput. Chem. Series, P. Schwerdtfeger (Elsevier, Amsterdam 2004) p. 67, in press

  31. D.R. Hamann: Phys. Rev. B 40, 2980 (1989)

    Article  ADS  Google Scholar 

  32. C.R.A. Catlow, W.C. Mackrodt: In Computer Simulation of Solids Lect. Notes in Phys., Vol. 166, C.R.A. Catlow, W.C. Mackrodt (Springer, Berlin 1982) p. 3

  33. C.E. Moore: Atomic Energy Levels (Natl. Bur. Stand. U.S. Circ. No. 467, GPO, WA DC 1952)

  34. R.G. Parr, W. Yang: Density Functional Theory for Atoms and Molecules (Oxford Uni., Oxford 1989)

  35. G. Haas, A. Menck, H. Brune, J.V. Barth, J.A. Venables, K. Kern: Phys. Rev. B 61, 11105 (2000)

    Article  ADS  Google Scholar 

  36. I.V. Yudanov, R. Sahnoun, K.M. Neyman, N. Rösch: J. Chem. Phys. 117, 9887 (2002)

    Article  ADS  Google Scholar 

  37. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais: Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  38. V.V. Rivanenkov, V.A. Nasluzov, A.M. Shor, K.M. Neyman, N. Rösch: Surf. Sci. 525, 173 (2003)

    Article  ADS  Google Scholar 

  39. L.E. Chirlian, M.M. Francl: J. Comp. Chem. 8, 894 (1987)

    Article  Google Scholar 

  40. As mentioned in Sect. 3, the adsorption energy for the complex Co/MgO was calculated with respect to the atomic energy of the DF ground state configuration d8s1 computed to be 0.63 eV more stable than the experimental ground state configuration d7s2. Using the latter experimental atomic configuration as reference would result in a binding energy of 1.85 eV for a Co adatom; this value is in the range of the binding energies for the “neighboring” Ni/MgO and Fe/MgO systems. See also the discussion elsewhere on the reliability of DF atomic references [18, 19]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.M. Neyman.

Additional information

PACS

68.43.Bc; 68.43.Fg; 71.15.Nc; 82.65.+r; 68.35.Ct; 68.43.-h; 73.20.Hb; 71.15.Mb; 75.70.Cn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neyman, K., Inntam, C., Nasluzov, V. et al. Adsorption of d-metal atoms on the regular MgO(001) surface: Density functional study of cluster models embedded in an elastic polarizable environment. Appl. Phys. A 78, 823–828 (2004). https://doi.org/10.1007/s00339-003-2437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2437-5

Keywords

Navigation