Skip to main content
Log in

Adhesion control by inflation: implications from biology to artificial attachment device

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

There is an increasing demand for materials that incorporate advanced adhesion properties, such as an ability to adhere in a reversible and controllable manner. In biological systems, these features are known from adhesive pads of the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima. These species have convergently developed soft, hemispherically shaped pads that might be able to control their adhesion through active changing the curvature of the pad. Inspired by these biological systems, an artificial model system is developed here. It consists of an inflatable membrane clamped to the metallic cylinder and filled with air. Pull-off force measurements of the membrane surface were conducted in contact with the membrane at five different radii of curvature r c with (1) a smooth polyvinylsiloxane membrane and (2) mushroom-shaped adhesive microstructured membrane made of the same polymer. The hypothesis that an increased internal pressure, acting on the membrane, reduces the radius of the membrane curvature, resulting in turn in a lower pull-off force, is verified. Such an active control of adhesion, inspired by biological models, will lead to the development of industrial pick-and-drop devices with controllable adhesive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.N. Gorb, Biological attachment devices: exploring nature’s diversity for biomimetics. Phil. Trans. R. Soc. A 336, 1557–1574 (2008)

    Article  ADS  Google Scholar 

  2. S.N. Gorb, R.G. Beutel, E.V. Gorb, Y. Jiao, V. Kastner, S. Niederegger, V.L. Popov, M. Scherge, U. Schwarz, W. Vötsch, Structural design and biomechanics of friction-based releasable attachment devices in insects. Integr. Comp. Biol. 42, 1127–1139 (2002)

    Article  Google Scholar 

  3. W.J.P. Barnes, Functional morphology and design constraints of smooth adhesive pads. MRS Bull. 32, 479–485 (2007)

    Article  Google Scholar 

  4. M. Kamperman, E. Kroner, A. del Campo, R.M. McMeeking, E. Arzt, Functional adhesive surfaces with “gecko” effect: the concept of contact splitting. Adv. Eng. Mater. 12, 335–348 (2010)

    Article  Google Scholar 

  5. H. Gao, X. Wang, H. Yao, S.N. Gorb, E. Arzt, Mechanics of hierarchical adhesion structures of geckos. Mech. Mat. 37, 275–285 (2005)

    Article  Google Scholar 

  6. A.P. Russell, A contribution to the functional analysis of the foot of the tokay, Gekko gecko (Reptilia: Gekkonidae). J. Zool. 176, 437–476 (1975)

    Article  Google Scholar 

  7. S. Niederegger, S.N. Gorb, Tarsal movements in flies during leg attachment and detachment on a smooth substrate. J. Insect Physiol. 49, 611–620 (2003)

    Article  Google Scholar 

  8. W. Federle, E.L. Brainerd, T.A. McMahon, B. Hölldobler, Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc. Natl. Acad. Sci. USA 98, 6215–6220 (2001)

    Article  ADS  Google Scholar 

  9. A.P. Russell, Integrative functional morphology of the gekkotan adhesive system (Reptilia: Gekkota). Intergr. Comp. Biol. 42, 1154–1163 (2002)

    Article  Google Scholar 

  10. M. Varenberg, S.N. Gorb, Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21, 483–486 (2009)

    Article  Google Scholar 

  11. W.J.P. Barnes, P.J.P. Goodwyn, M. Nokhbatolfoghahai, S.N. Gorb, Elastic modulus of tree frog adhesive toe pads. J. Comp. Physiol. A. 197, 969–978 (2011)

    Article  Google Scholar 

  12. Z. Dai, S.N. Gorb, Contact mechanics of pad of grasshopper (Insecta: Orthoptera) by finite element methods. Chin. Sci. Bull. 54, 549–555 (2009)

    Article  Google Scholar 

  13. M. Scherge, S.N. Gorb, Using biological principles to design MEMS. J. Micromech. Microeng. 10, 359–364 (2000)

    Article  ADS  Google Scholar 

  14. W.J.P. Barnes, C. Oines, J.M. Smith, Whole animal measurements of shear and adhesive forces in adult tree frogs insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale. J. Comp. Physiol. A. 192, 1179–1191 (2006)

    Article  Google Scholar 

  15. B. Henning, Morphologie und Histologie der Tarsen von Tettigonia viridissima L (Orthoptera, Ensifera). Zoomorphology 79, 323–342 (1974)

    Google Scholar 

  16. S.N. Gorb, Y. Jiao, M. Scherge, Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae). J. Comp. Physiol. A. 186, 821–831 (2000)

    Article  Google Scholar 

  17. Y. Jiao, S.N. Gorb, M. Scherge, Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J. Exp. Biol. 203, 1887–1895 (2000)

    Google Scholar 

  18. A. Peressadko, S.N. Gorb, When less is more experimental evidence for tenacity enhancement by division of contact area. J. Adhesion 80, 247–261 (2004)

    Article  Google Scholar 

  19. A.E. Kovalev, S.N. Gorb, Charge contribution to the adhesion performance of polymeric microstructures. Tribol. Lett. 48, 103–109 (2012)

    Article  Google Scholar 

  20. S.N. Gorb, M. Varenberg, A. Peressadko, J. Tuma, Biomimetic mushroom-shaped fibrillar adhesive microstructure. J. R. Soc. Interface 13, 271–275 (2007)

    Article  Google Scholar 

  21. L. Heepe, A.E. Kovalev, M. Varenberg, J. Tuma, S.N. Gorb, First mushroom-shaped adhesive microstructure: a review. Theor. Appl. Mech. Lett. 2, 014008 (2012)

    Article  Google Scholar 

  22. L. Heepe, S. Gorb, Biologically inspired mushroom-shaped adhesive microstructures. Annu. Rev. Mater. Res. 44, 14.1–14.31 (2014). doi:10.1146/annurev-matsci-062910-100458

  23. E. Kroner, D.R. Paretkar, R.M. McMeeking, E. Arzt, Adhesion of flat and structured PDMS samples to spherical and flat probes: a comparative study. J. Adhesion 87, 447–465 (2011)

    Article  Google Scholar 

  24. M. Varenberg, A. Peressadko, S.N. Gorb, S. Arzt, S. Mrotzek, Advanced testing of adhesion and friction with a microtribometer. Rev. Sci. Instrum. 77, 066105 (2006)

    Article  ADS  Google Scholar 

  25. N. Nadermann, J. Ning, A. Jagota, C.-Y. Hui, Active switching of adhesion in a film-terminated fibrillar structure. Langmuir 26, 15464–15471 (2010)

    Article  Google Scholar 

  26. H. Prahlad, R. Pelrine, S. Stanford, J. Marlow, R. Kornbluh. Electroadhesive robots—wall climbing robots enabled by a novel, robust, and electrically controllable adhesion technology. IEEE International Conference on Robotics and Automation 3028–3033, 2008

  27. S. Reddy, E. Arzt, A. del Campo, Bioinspired surfaces with switchable adhesion. Adv. Mater. 19, 3833–3837 (2007)

    Article  Google Scholar 

  28. M. Kamperman, A. Synytska, Switchable adhesion by chemical functionality and topography. J. Mater. Chem. 22, 19390–19401 (2012)

    Article  Google Scholar 

  29. D. Paretkar, M. Kamperman, A.S. Schneider, D. Martina, C. Creton, E. Arzt, Bioinspired pressure actuated adhesive system. Mater. Sci. Eng. C 31, 1152–1159 (2011)

    Article  Google Scholar 

  30. H.E. Jeong, M.K. Kwak, K.Y. Suh, Stretchable, adhesion-tunable dry adhesive by surface wrinkling. Langmuir 26, 2223–2226 (2010)

    Article  Google Scholar 

  31. M. Varenberg, S.N. Gorb, Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J. R. Soc. Interface 4, 721–725 (2007)

    Article  Google Scholar 

  32. M.J. Vogel, P.H. Steen, Capillarity-based switchable adhesion. PNAS 107, 3377–3381 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Valuable discussions with Dr. Henrik Peisker and Dr. Alexander Kovalev on the experimental set-up and contact mechanics are acknowledged. This work was supported by the German Science Foundation (DFG, project C-10 SFB 677).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav N. Gorb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dening, K., Heepe, L., Afferrante, L. et al. Adhesion control by inflation: implications from biology to artificial attachment device. Appl. Phys. A 116, 567–573 (2014). https://doi.org/10.1007/s00339-014-8504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8504-2

Keywords

Navigation