Skip to main content
Log in

“Live” Prussian blue fading by time-resolved X-ray absorption spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Prussian blue (PB) is an artists’ pigment that has been frequently used in many artworks but poses several problems of conservation because of its fading under light and anoxia treatment. PB fading is due to the reduction of iron(III) into iron(II) and depends a lot on the object investigated. Due to the complexity of the structure, the precise physico-chemical mechanisms behind the redox process remain obscure. In this paper, we present a procedure to investigate light- and anoxia-induced fading of PB-paper samples by means of time resolved X-ray absorption spectroscopy performed at the Fe K-edge. A system composed of a visible light source and a flux-controlled environmental cell allowed light, gas and humidity to be modified in situ. The synchrotron X-ray beam was evidenced to induce a reduction of PB and to play a major role in the kinetics. The analysis of the PB fading kinetics of a sample submitted to various gas and light environments showed that both synchrotron beam and anoxia were influencing PB reduction in a correlated way. In comparison, light was found to play a minor role. Finally, we have demonstrated that the type of paper substrate could influence significantly the kinetics of reduction. Several hypotheses to explain the correlation between PB reduction mechanism and substrate are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Unfortunately, the kinetics experiments performed on samples in AirLight environment were discarded because of problems with light focus.

  2. The total exposure time to measure one XANES spectrum is 20.3 s for an average spectrum (3 ms collection time + 200 ms lecture, i.e., 203 ms/frame, average spectrum obtained on 100 frames). No change was observed during these 100 frames, so that it is very unlikely that SR beam damage occurred during the measurement of individual XANES spectra.

  3. An estimation of the absorbed energy, expressed in J, is: absorbed flux × 7120 eV × exposition time × 1.6.10−19.

References

  1. J. Bartoll, B. Jackisch, Z. Kunsttechnol. Konserv. 21(1), 88 (2010)

    Google Scholar 

  2. M. Ware, J. Chem. Educ. 85(5), 612 (2008)

    Article  Google Scholar 

  3. S. Rowe, Stud. Conserv. 49(4), 259 (2004)

    Article  Google Scholar 

  4. H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, Inorg. Chem. 16(11), 2704 (1977)

    Article  Google Scholar 

  5. F. Herren, P. Fischer, A. Ludi, W. Halg, Inorg. Chem. 19(4), 956 (1980)

    Article  Google Scholar 

  6. M. Verdaguer, Science 272(5262), 698 (1996)

    Article  ADS  Google Scholar 

  7. P.R. Bueno, F.F. Ferreira, D. Gimenez-Romero, G.O. Setti, R.C. Faria, C. Gabrielli, H. Perrot, J.J. Garcia-Jareno, F. Vicente, J. Phys. Chem. C 112(34), 13264 (2008)

    Article  Google Scholar 

  8. C. Gervais, M.A. Languille, S. Reguer, M. Gillet, E.P. Vicenzi, L. Bertrand, Submitted

  9. A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C.C.D. Moulin, M. Verdaguer, J. Am. Chem. Soc. 122(28), 6648 (2000)

    Article  Google Scholar 

  10. A. Bleuzen, V. Escax, A. Ferrier, F. Villain, M. Verdaguer, P. Munsch, J.P. Itie, Angew. Chem., Int. Ed. Engl. 43(28), 3728 (2004)

    Article  Google Scholar 

  11. Z.L. Lu, X.Y. Wang, Z.L. Liu, F.H. Liao, S. Gao, R.G. Xiong, H.W. Ma, D.Q. Zhang, D.B. Zhu, Inorg. Chem. 45(3), 999 (2006)

    Article  Google Scholar 

  12. M. Vidotti, S.I.C. de Torresi, J. Braz. Chem. Soc. 19(7), 1248 (2008)

    Article  Google Scholar 

  13. R. Koncki, T. Lenarczuk, A. Radomska, S. Glab, Analyst 126(7), 1080 (2001)

    Article  ADS  Google Scholar 

  14. L. Samain, G. Silversmit, J. Sanyova, B. Vekemans, H. Salomon, B. Gilbert, F. Grandjean, G.J. Long, R.P. Hermann, L. Vincze, D. Strivaya, J. Anal. At. Spectrom. 26, 930 (2011)

    Article  Google Scholar 

  15. J.M. del Hoyo-Meléndez, M.F. Mecklenburg, Spectrosc. Lett. 44(2), 113 (2011)

    Article  ADS  Google Scholar 

  16. S. Schroeder, N. Tsapatsaris, N. Eastaugh, in 8th European Conference on Research for Protection, Conservation and Enhancement of Cultural Heritage, ed. by J. Kolar, Ljubljana, Slovenia, November 10–12 (2008), pp. 50–51

    Google Scholar 

  17. A. Dostal, G. Kauschka, S.J. Reddy, F. Scholz, J. Electroanal. Chem. 406(1–2), 155 (1996)

    Google Scholar 

  18. A. Lerwill, J.H. Townsend, H. Liang, S. Hackney, J. Thomas, Opt. Arts Archit. Archaeol. 6618, 66181G (2007)

    Article  Google Scholar 

  19. F. Baudelet, Q. Kong, L. Nataf, J.D. Cafun, A. Congeduti, A. Monza, S. Chagnot, J.P. Itié, High Press. Res. 31(1), 136 (2011)

    Article  ADS  Google Scholar 

  20. M. Newville, J. Synchrotron Radiat. 8, 322 (2001)

    Article  Google Scholar 

  21. K. Hayakawa, K. Hatada, P. D’Angelo, S. Della Longa, C.R. Natoli, M. Benfatto, J. Am. Chem. Soc. 126, 15618 (2004)

    Article  Google Scholar 

  22. B. Cochain, D.R. Neuville, D. De Ligny, J. Roux, F. Baudelet, E. Strukelj, P. Richet, J. Phys. Conf. Ser. 190, 012182 (2009)

    Article  ADS  Google Scholar 

  23. J.W. Murray, E.F. Garman, R.B.G. Ravelli, J. Appl. Crystallogr. 37, 513 (2004)

    Article  Google Scholar 

  24. J.M. Holton, J. Synchrotron Radiat. 16, 133–142 (2009)

    Article  Google Scholar 

  25. J.A. Schmidt, C.S. Rye, N. Gurnagul, Polym. Degrad. Stab. 49(2), 291 (1995)

    Article  Google Scholar 

  26. J.H. Townsend, J. Thomas, S. Hackney, A. Lerwill, Stud. Conserv. 1(Suppl.), 76 (2008)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Lucie Nataf of the ODE team and Frédéric Picca for his joyful and spontaneous help in python programming. Thanks also to the team of the Soleil Chemistry Laboratory for help in preparing PB-paper samples and Matjia Strlic for sharing with us interesting points on paper aging process. We thank Robert J. Koestler for suggesting us to investigate PB fading in cultural artefacts. Claire Gervais thanks the Swiss National Science Foundation for partial funding through the SNSF Professorship grant 138986. This work has been developed as part of the IPANEMA/Smithsonian Institution agreement on science cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Gervais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gervais, C., Languille, MA., Reguer, S. et al. “Live” Prussian blue fading by time-resolved X-ray absorption spectroscopy. Appl. Phys. A 111, 15–22 (2013). https://doi.org/10.1007/s00339-013-7581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7581-y

Keywords

Navigation