Skip to main content
Log in

Position-dependent chemotactic response of slowly migrating cells in sigmoidal concentration profiles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Characterizing the chemotactic motility of slowly migrating cells as a function of time is still challenging. In this paper, we use a microfluidic device for investigating the chemotactic activity of HFF-1 fibroblasts in a sigmoidal concentration profile of epidermal growth factor (EGF). Sigmoidal concentration profiles are very common in biological systems but, in contrast to linear gradients, are much less studied in microfluidic systems. We monitored cell migration for up to 10 hours and found that chemotaxis is strongest where the absolute EGF concentration is below 25 pM (K D of EGF is 1 nM). Calculating the fraction of receptor occupancy (FRO) at the front and rear of the cells showed that the chemotactic activity of HFF-1 cells scaled with the difference in FRO between both ends of the cell normalized by the average FRO av of the cell. Interestingly, the mean chemotactic index of the cells was found to be a function of the gradient at the starting position and did not change when cells were entering into other regions of the highly non-linear concentration profile. Our studies demonstrate the usefulness of stable sigmoidal concentration profiles produced in microfluidic channels for a detailed analysis of the chemotactic response of slowly migrating cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Szurmant, G.W. Ordal, Microbiol. Mol. Biol. Rev. 68, 301–319 (2004)

    Article  Google Scholar 

  2. P.N. Devreotes, C. Janetopoulos, J. Biol. Chem. 278(23), 20445–20448 (2003)

    Article  Google Scholar 

  3. E. Procko, S.R. McColl, BioEssays 27(2), 153–163 (2005)

    Article  Google Scholar 

  4. K.M. Scully, M.G. Rosenfeld, Science 295(5563), 2231–2235 (2002)

    Article  ADS  Google Scholar 

  5. J. Condeelis, R.H. Singer, J.E. Segall, Annu. Rev. Cell Dev. Biol. 21, 695–718 (2005)

    Article  Google Scholar 

  6. P.N. Devreotes, S.H. Zigmond, Annu. Rev. Cell Dev. Biol. 4, 649–686 (1988)

    Article  Google Scholar 

  7. R.R. Kay, P. Langridge, D. Traynor, O. Hoeller, Nat. Rev. Mol. Cell Biol. 9(6), 455–463 (2008)

    Google Scholar 

  8. A.J. Singer, R.A.F. Clark, N. Engl. J. Med. 341(10), 738–746 (1999)

    Article  Google Scholar 

  9. I.C. Schneider, J.M. Haugh, J. Cell Biol. 171(5), 883–892 (2005)

    Article  Google Scholar 

  10. I.C. Schneider, J.M. Haugh, Cell Cycle 5(11), 1130–1134 (2006)

    Article  Google Scholar 

  11. C. Wu, S.B. Asokan, M.E. Berginski, E.M. Haynes, N.E. Sharpless, J.D. Griffith, S.M. Gomez, J.E. Bear, Cell 148, 973–987 (2012)

    Article  Google Scholar 

  12. T.M. Keenan, A. Folch, Lab Chip 8(1), 34–57 (2008)

    Article  Google Scholar 

  13. N.L. Jeon, S.K.W. Dertinger, D.T. Chiu, I.S. Choi, A.D. Stroock, G.M. Whitesides, Langmuir 16(22), 8311–8316 (2000)

    Article  Google Scholar 

  14. S.Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M.L. Shuler, M. Wu, Lab Chip 7(6), 763–769 (2007)

    Article  Google Scholar 

  15. D. Irimia, G. Charras, N. Agrawal, T. Mitchison, M. Toner, Lab Chip 7(12), 1783–1790 (2007)

    Article  Google Scholar 

  16. W. Saadi, S.W. Rhee, F. Lin, B. Vahidi, B.G. Chung, N.L. Jeon, Biomed. Microdevices 9(5), 627–635 (2007)

    Article  Google Scholar 

  17. S. Selimovic, W.Y. Sim, S.B. Kim, Y.H. Jang, W.G. Lee, M. Khabiry, H. Bae, S. Jambovane, J.W. Hong, A. Khademhosseini, Anal. Chem. 83(6), 2020–2028 (2011)

    Article  Google Scholar 

  18. K. Francis, B.O. Palsson, Proc. Natl. Acad. Sci. USA 94, 12258–12262 (1997)

    Article  ADS  Google Scholar 

  19. F. Lin, E.C. Butcher, Lab Chip 6(11), 1462–1469 (2006)

    Article  Google Scholar 

  20. B.G. Chung, A. Manbachi, W. Saadi, F. Lin, N.L. Jeon, A. Khademhosseini, J. Visual. Exp. 7, 271 (2007)

    Google Scholar 

  21. J.Y. Park, C.M. Hwang, S.H. Lee, S.H. Lee, Lab Chip 7(12), 1673–1680 (2007)

    Article  Google Scholar 

  22. I. Barkefors, S. Le Jan, L. Jakobsson, E. Hejll, G. Carlson, H. Johansson, J. Jarvius, J.W. Park, N.L. Jeon, J. Kreuger, J. Biol. Chem. 283(20), 13905–13912 (2008)

    Article  Google Scholar 

  23. H. Shiraha, A. Glading, K. Gupta, A. Wells, J. Cell Biol. 146(1), 243–254 (1999)

    Article  Google Scholar 

  24. R. Kalluri, M. Zeisberg, Nat. Rev. Cancer 6, 392–401 (2006)

    Article  Google Scholar 

  25. H. Shroff, C.G. Galbraith, J.A. Galbraith, H. White, J. Gillette, S. Olenych, M.W. Davidson, E. Betzig, Proc. Natl. Acad. Sci. USA 104, 20308–20313 (2007)

    Article  ADS  Google Scholar 

  26. Q. Kong, R.J. Majeska, M. Vazquez, Exp. Cell Res. 317, 1491–1502 (2011)

    Article  Google Scholar 

  27. F. Gast, P. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M.S. Jaeger, K. Uhlig, P. Geggier, S. Howitz, Microfluid. Nanofluid. 2, 21–36 (2006)

    Article  Google Scholar 

  28. J.B. Salmon, A. Ajdari, J. Appl. Phys. 101(7), 074902 (2007)

    Article  ADS  Google Scholar 

  29. O. Ernst, A. Lieske, M.S. Jaeger, A. Lankenau, C. Duschl, Lab Chip 7, 1322–1329 (2007)

    Article  Google Scholar 

  30. C.M. Revell, J.A. Dietrich, C.C. Scott, A. Luttge, L.S. Baggett, K.A. Athanasiou, Matrix Biology 25, 523–533 (2006)

    Article  Google Scholar 

  31. R.B. Lichtner, A.M. Kaufmann, A. Kittmann, B. Rohde-Schulz, J. Walter, L. Williams, A. Ullrich, V. Schirrmacher, K. Khazaie, Oncogene 10(9), 1823–1832 (1995)

    Google Scholar 

  32. S.J. Wang, W. Saadi, F. Lin, C.M.C. Nguyen, N.L. Jeon, Exp. Cell Res. 300(1), 180–189 (2004)

    Article  Google Scholar 

  33. F. Lin, C.M.C. Nguyen, S.J. Wang, W. Saadi, S.P. Gross, N.L. Jeon, Biochem. Biophys. Res. Commun. 319, 576–581 (2004)

    Article  Google Scholar 

  34. C. Beta, T. Fröhlich, H.U. Bödeker, E. Bodenschatz, Lab Chip 8, 1087–1096 (2008)

    Article  Google Scholar 

  35. D. Fuller, W. Chen, M. Adler, A. Groisman, H. Levine, W.J. Rappel, W.F. Loomis, Proc. Natl. Acad. Sci. USA 107(21), 9656–9659 (2010)

    Article  ADS  Google Scholar 

  36. L. Song, S.M. Nadkarni, H.U. Bödeker, C. Beta, A. Bae, C. Franck, W.J. Rappel, W.F. Loomis, E. Bodenschatz, Eur. J. Cell Biol. 85, 981–989 (2006)

    Article  Google Scholar 

  37. W.J. Rappel, H. Levine, Proc. Natl. Acad. Sci. USA 105(49), 19270–19275 (2008)

    Article  ADS  Google Scholar 

  38. H.S. Wiley, D.D. Cunningham, Cell 25, 433–440 (1981)

    Article  Google Scholar 

  39. O.D. Weiner, P.O. Neilsen, G.D. Prestwich, M.W. Kirschner, L.C. Cantley, H.R. Bourne, Nat. Cell Biol. 4(7), 509–513 (2002)

    Article  Google Scholar 

  40. P.J.M. van Haastert, M. Postma, Biophys. J. 93, 1787–1796 (2007)

    Article  Google Scholar 

  41. R.T. Tranquillo, D.A. Lauffenburger, S.H. Zigmond, J. Cell Biol. 106(2), 303–309 (1988)

    Article  Google Scholar 

  42. E. Jabbarzadeh, C.F. Abrams, J. Theor. Biol. 235, 221–232 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the German Federal Ministry of Education and Research (BMBF) under 03 12 02 3B and W4 00 37. We thank B. Morgenstern (IBMT) for cell culture assistance, S. Howitz (GeSiM, Grosserkmannsdorf, Germany) for support in chip processing, and Cetoni (Korbussen, Germany) for their valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Jaeger.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 591 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renner, A., Jaeger, M.S., Lankenau, A. et al. Position-dependent chemotactic response of slowly migrating cells in sigmoidal concentration profiles. Appl. Phys. A 112, 637–645 (2013). https://doi.org/10.1007/s00339-012-7507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7507-0

Keywords

Navigation