Skip to main content

Advertisement

Log in

Evaluation of adhesive and elastic properties of materials by depth-sensing indentation of spheres

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Work of adhesion is the crucial material parameter for application of theories of adhesive contact. It is usually determined by experimental techniques based on the direct measurements of pull-off force of a sphere. These measurements are unstable due to instability of the load-displacement diagrams at tension, and they can be greatly affected by roughness of contacting solids. We show how the values of work of adhesion and elastic contact modulus of materials may be quantified using a new indirect approach (the Borodich–Galanov (BG) method) based on an inverse analysis of a stable region of the force-displacements curve obtained from the depth-sensing indentation of a sphere into an elastic sample. Using numerical simulations it is shown that the BG method is simple and robust. The crucial difference between the proposed method and the standard direct experimental techniques is that the BG method may be applied only to compressive parts of the force-displacements curves. Finally, the work of adhesion and the elastic modulus of soft polymer (polyvinylsiloxane) samples are extracted from experimental load-displacement diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Kendall, Molecular Adhesion and its Applications: The Sticky Universe (Kluwer Academic, New York, 2001)

    Google Scholar 

  2. E.R. Beach, G.W. Tormoen, J. Drelich, R. Han, Pull-off force measurements between rough surfaces by atomic force microscopy. J. Colloid Interface Sci. 247, 84 (2002)

    Article  Google Scholar 

  3. D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741 (1969)

    Article  Google Scholar 

  4. W. Wu, R.F. Giese, C.J. van Oss, Evaluation of the Lifshitz–Van der Waals/acid–base approach to determine surface tension components. Langmuir 11, 379 (1995)

    Article  Google Scholar 

  5. B.V. Derjaguin, N.A. Krotova, V.P. Smilga, Adhesion of Solids (Nauka, Moscow, 1973)

    Google Scholar 

  6. K.J. Wahl, S.A.S. Asif, J.A. Greenwood, K.L. Johnson, Oscillating adhesive contacts between micron-scale tips and compliant polymers. J. Colloid Interface Sci. 296, 178 (2006)

    Article  Google Scholar 

  7. D.M. Ebenstein, K.J. Wahl, A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves. J. Colloid Interface Sci. 298, 652 (2006)

    Article  Google Scholar 

  8. S. Vajpayee, Ch.-Y. Hui, A. Jagota, Model-independent extraction of adhesion energy from indentation experiments. Langmuir 24, 9401 (2008)

    Article  Google Scholar 

  9. F.M. Borodich, B.A. Galanov, Non-direct estimations of adhesive and elastic properties of materials by depth-sensing indentation. Proc. R. Soc. A 464, 2759 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. F.M. Borodich, Contact problems at nano/microscale and depth sensing indentation techniques. Mater. Sci. Forum 662, 53 (2011)

    Article  Google Scholar 

  11. S.I. Bulychev, V.P. Alekhin, M.Kh. Shorshorov, A.P. Ternovskii, G.D. Shnyrev, Determining Young’s modulus from the indentor penetration diagram. Ind. Lab. 41, 1409 (1975)

    Google Scholar 

  12. F.M. Borodich, L.M. Keer, Contact problems and depth-sensing nanoindentation for frictionless and frictional boundary conditions. Int. J. Solids Struct. 41, 2479 (2004)

    Article  MATH  Google Scholar 

  13. F.M. Borodich, L.M. Keer, Evaluation of elastic modulus of materials by adhesive (no-slip) nano-indentation. Proc. R. Soc. Ser. A 460, 507 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. G.N. Kalei, Some results of microhardness test using the depth of impression. Mashinovedenie 4, 105 (1968)

    Google Scholar 

  15. G. Binnig, C.F. Quate, Ch. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986)

    Article  ADS  Google Scholar 

  16. D. Maugis, Contact, Adhesion and Rupture of Elastic Solids (Springer, Berlin, 2000)

    MATH  Google Scholar 

  17. B.A. Galanov, O.N. Grigor’ev, Adhesion and wear of diamond. Part I. Modelling. Preprint. Institute Prob. Mat. Sci., Nat. Ac. Sci. Ukraine, Kiev, pp. 1–14 (1994)

  18. R.W. Carpick, N. Agraït, D.F. Ogletree, M. Salmeron, Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J. Vac. Sci. Technol. B 14, 1289 (1996)

    Article  Google Scholar 

  19. F.M. Borodich, Hertz type contact problems for power-law shaped bodies, in Contact Problems. The Legacy of L.A. Galin, ed. by L.A. Galin, G.M.L. Gladwell (Springer, New York, 2008), p. 261

    Google Scholar 

  20. F.M. Borodich, L.M. Keer, C.J. Korach, Analytical study of fundamental nanoindentation test relations for indenters of non-ideal shapes. Nanotechnology 14, 803 (2003)

    Article  ADS  Google Scholar 

  21. Y. Jiao, S. Gorb, M. Scherge, Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, insecta). J. Exp. Biol. 203, 1887 (2000)

    Google Scholar 

  22. D.C. Lin, E.K. Dimitriadis, F. Horkay, Robust strategies for automated AFM force curve analysis, II: adhesion-influenced indentation of soft, elastic materials. J. Biomech. Eng. 129, 904 (2007)

    Article  Google Scholar 

  23. E.V. Gorb, S.N. Gorb, Contact mechanics at the insect-plant interface. How do insects stick and how do plants prevent this, in Scaling in Solid Mechanics, ed. by F.M. Borodich (Springer, Berlin, 2009), p. 243

    Chapter  Google Scholar 

  24. F.M. Borodich, B.A. Galanov, Self-similar problems of elastic contact for non-convex punches. J. Mech. Phys. Solids 50, 2441 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, Biomimetic mushroom-shaped fibrillar adhesive microstructure. J. R. Soc. Interface 4, 271 (2007)

    Article  Google Scholar 

  26. J.A. Greenwood, Adhesion of elastic spheres. Proc. R. Soc. A 453, 1277 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. R.W. Carpick, D.F. Ogletree, M. Salmeron, A general equation for fitting contact area and friction vs load measurements. J. Colloid Interface Sci. 211, 395 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was initiated in the framework of the ADHESINT International Network supported by the Leverhulme Trust. It was also partly supported by the SPP 1420 priority program of the German Science Foundation (DFG) “Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials” (project GO 995/9-1).

In 2007, one of the authors (FB) delivered the first presentation of the BG method. After the presentation, Professor J.R. Willis (DAMTP, University of Cambridge) advised to develop an algorithm for checking the validity of the BG method and Professor K.L. Johnson (Department of Engineering, University of Cambridge) suggested to think about determination of the zero reference point on displacement axis. The authors are very grateful for these stimulating discussions and advise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feodor M. Borodich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodich, F.M., Galanov, B.A., Gorb, S.N. et al. Evaluation of adhesive and elastic properties of materials by depth-sensing indentation of spheres. Appl. Phys. A 108, 13–18 (2012). https://doi.org/10.1007/s00339-012-6982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6982-7

Keywords

Navigation