Skip to main content
Log in

Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Layers of ZnO nanoparticles with thicknesses of about 40 nm were prepared on Si substrates. It was shown that UV laser irradiation is suitable for consolidation and significant densification of the ZnO particle layers under ambient conditions. Both experiments and simulations show that an underlying SiO2 particle layer has a beneficial effect in inhibiting heat transfer towards the substrate and thus enables the application of temperature-sensitive carrier substrates like polymer foils despite the extremely high melting temperature of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)

    Article  ADS  Google Scholar 

  2. K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. Mater. 10, 45 (2011)

    Article  ADS  Google Scholar 

  3. M. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. 10, 382 (2011)

    Article  ADS  Google Scholar 

  4. J.-S. Lee, M.V. Kovalenko, J. Huang, D.S. Chung, D.V. Talapin, Nat. Nanotechnol. 6, 348 (2011)

    Article  ADS  Google Scholar 

  5. S. Walther, S. Schäfer, M.P.M. Jank, H. Thiem, W. Peukert, L. Frey, H. Ryssel, Microelectron. Eng. 87, 2312 (2010)

    Article  Google Scholar 

  6. M. Baum, I. Alexeev, M. Schmidt, J. Laser Nano/Microeng. 6, 191 (2011)

    Article  Google Scholar 

  7. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  8. H. Pan, N. Misra, S.H. Ko, C.P. Grigoropoulos, N. Miller, E.E. Haller, O. Dubon, Appl. Phys. A 94, 111 (2009)

    Article  ADS  Google Scholar 

  9. D. Lee, H. Pan, S.H. Ko, H.K. Park, E. Kim, C.P. Grigoropoulos, Appl. Phys. A (2012). doi:10.1007/s00339-012-6792-y

  10. S. Walther, S. Polster, B. Meyer, M.P.M. Jank, H. Ryssel, L. Frey, J. Vac. Sci. Technol. B 29, 01A601 (2011)

  11. Y.C. Liu, J.H. Hsieh, S.K. Tung, Thin Solid Films 510, 32 (2006)

    Article  ADS  Google Scholar 

  12. E.N. Bunting, J. Am. Ceram. Soc. 13, 5 (1930)

    Article  Google Scholar 

  13. M.N.R. Ashfold, F. Claeyssens, G.M. Fuge, S.J. Henley, Chem. Soc. Rev. 33, 23 (2004)

    Article  Google Scholar 

  14. H.G. Hirschberg, Handbuch Verfahrenstechnik und Anlagenbau. Chemie, Technik und Wirtschaftlichkeit (Springer, Berlin, 1999), p. 300

    Google Scholar 

  15. O.V. Mazurin, M.V. Streltsina, T.P. Shvaiko-Shvaikovskaya, Handbook of Glass Data (Elsevier, Amsterdam, 1983), p. 55

    Google Scholar 

  16. G.A. Slack, C.J. Glassbrenner, Phys. Rev. 134, A1058 (1964)

    Article  Google Scholar 

  17. VDI Gesellschaft, VDI-Wärmeatlas (Springer, Berlin, 2006)

    Google Scholar 

  18. Y.C. Liu, J.H. Hsieh, S.K. Tung, Thin Solid Films 510, 32 (2006)

    Article  ADS  Google Scholar 

  19. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985), p. 555

    Google Scholar 

  20. C. Kittel, Einführung in die Festkörperphysik (Oldenbourg, München, 2005), p. 140

    Google Scholar 

  21. N. Soga, O.L. Anderson, J. Appl. Phys. 38, 2985 (1967)

    Article  ADS  Google Scholar 

  22. R. Prasher, Phys. Rev. B 74, 165413 (2006)

    Article  ADS  Google Scholar 

  23. Y. Kinemuchi, M. Mikami, K. Kobayashi, K. Watari, Y. Hotta, J. Electron. Mater. 39, 2059 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The support of the Deutsche Forschungsgemeinschaft (DFG, Graduiertenkolleg 1161/2) is gratefully acknowledged. Additionally, we are thankful for the support by Evonik Industries AG and also for the production of particle suspensions by Daniel Kilian. Furthermore, we want to thank Anke Haas for operating the electron microscope. Moreover, the authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Baum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, M., Polster, S., Jank, M.P.M. et al. Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget. Appl. Phys. A 107, 269–273 (2012). https://doi.org/10.1007/s00339-012-6871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6871-0

Keywords

Navigation