Skip to main content

Advertisement

Log in

Experimental investigation on optical and thermal properties of propylene glycol–water based nanofluids for direct absorption solar collectors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Direct absorption solar collectors (DASCs), which absorb solar radiation energy by the working medium, attract considerable attention. Because the addition of nanoparticles can improve the efficiency of solar collectors, nanofluids can be used as the working fluid. The stability, optical properties and thermal conductivity of propylene glycol–water based nanofluids containing TiO2, SiC and multiwalled carbon nanotubes (MWCNTs) are investigated in this paper. The results confirmed that nanofluids with surfactant exhibited good stability. By combining comprehensive transmittance, extinction coefficient and the solar-weighted absorption coefficient (Am) measurements, the transmittance of TiO2 and SiC nanofluids decreased from 65% at 0.025 vol% to about 5% at 0.2 vol%, and the light can hardly pass the MWCNT nanofluids over 0.05 vol%. MWCNT nanofluids had the highest Am, followed by SiC nanofluids and TiO2 nanofluids, which exhibited optimum properties even at low concentration. In addition, thermal conductivity of nanofluids increased with the growing volume fractions and temperature. MWCNT nanofluids had the maximum thermal conductivity (0.508 W/m k at 0.2 vol%) at 20 °C. This work provides valuable insights into the optical and thermal property enhancement of nanofluids for increasing the efficiency of DASCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\({\varphi _{\text{v}}}\) :

Volume fraction [%]

m :

Mass [g]

\(\rho\) :

Density [g/cm2]

ζ :

Zeta potential [mV]

K(λ):

Extinction coefficient

T(λ):

Spectral transmittance

L :

Optical path [cm]

Am:

Solar-weighted absorption coefficient

λ :

Wavelength [nm]

\({I_{{\text{b}}\lambda }}\left( \lambda \right)\) :

Incident solar intensity [cd]

h :

Planck’s constant [J s]

k B :

Boltzman constant [J/K]

c 0 :

Speed of light in vacuum [m/s]

k :

Thermal conductivity [W/m k]

T solar :

Temperature [°C]

References

  1. N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103(43), 15729–15735 (2006)

    Article  ADS  Google Scholar 

  2. T.P. Otanicar, J.S. Golden, Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies. Environ. Sci. Technol. 43(15), 6082–6087 (2009)

    Article  ADS  Google Scholar 

  3. W. Li, C. Zou, X. Li, Thermo-physical properties of cooling water-based nanofluids containing TiO2, nanoparticles modified by Ag elementary substance for crystallizer cooling system. Powder Technol. 329, 434–444 (2018)

    Article  Google Scholar 

  4. S.M. Ladjevardi, A. Asnaghi, P.S. Izadkhast et al., Applicability of graphite nanofluids in direct solar energy absorption. Sol. Energy 94, 327–334 (2013)

    Article  ADS  Google Scholar 

  5. R. Saidur, T.C. Meng, Z. Said et al., Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int. J. Heat Mass Transf. 55(21), 5899–5907 (2012)

    Article  Google Scholar 

  6. H.K. Gupta, G.D. Agrawal, J. Mathur, Investigations for effect of Al2O3–H2O nanofluid flow rate on the efficiency of direct absorption solar collector. Case Stud. Therm. Eng. 5, 70–78 (2015)

    Article  Google Scholar 

  7. V. Khullar, H. Tyagi, N. Hordy et al., Harvesting solar thermal energy through nanofluid-based volumetric absorption systems. Int. J. Heat Mass Transf. 77, 377–384 (2014)

    Article  Google Scholar 

  8. H. Tyagi, P. Phelan, R. Prasher, Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. J. Sol. Energy Eng. 131(4), 041004 (2009)

    Article  Google Scholar 

  9. R.C. Shende, S. Ramaprabhu, Thermo-optical properties of partially unzipped multiwalled carbon nanotubes dispersed nanofluids for direct absorption solar thermal energy systems. Sol. Energy Mater. Sol. Cells 157, 117–125 (2016)

    Article  Google Scholar 

  10. T.P. Otanicar, P.E. Phelan, R.S. Prasher et al., Nanofluid-based direct absorption solar collector. J. Renew. Sustain. Energy 2(3), 033102 (2010)

    Article  Google Scholar 

  11. R.A. Taylor, P.E. Phelan, T.P. Otanicar et al., Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res. Lett. 6(1), 1–11 (2011)

    Article  Google Scholar 

  12. Z. Said, M.H. Sajid, R. Saidur et al., Evaluating the optical properties of TiO2 nanofluid for a direct absorption solar collector. Numerical Heat Transf. Part A Appl. 67(9), 1010–1027 (2015)

    Article  ADS  Google Scholar 

  13. Q. He, S. Wang, S. Zeng et al., Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems. Energy Convers. Manag. 73, 150–157 (2013)

    Article  Google Scholar 

  14. T.P. Otanicar, P.E. Phelan, J.S. Golden, Optical properties of liquids for direct absorption solar thermal energy systems. Sol. Energy 83(7), 969–977 (2009)

    Article  ADS  Google Scholar 

  15. K.S. Suganthi, V.L. Vinodhan, K.S. Rajan, ZnO–propylene glycol–water nanofluids with improved properties for potential applications in renewable energy and thermal management. Coll. Surf. A 506, 63–73 2016

    Article  Google Scholar 

  16. K.S. Suganthi, K.S. Rajan, A formulation strategy for preparation of ZnO–propylene glycol–water nanofluids with improved transport properties. Int. J. Heat Mass Transf. 71, 653–663 (2014)

    Article  Google Scholar 

  17. M.T. Naik, G.R. Janardhana, K.V.K. Reddy et al., Experimental investigation into rheological property of copper oxide nanoparticles suspended in propylene glycol–water based fluids. ARPN J. Eng. Appl. Sci. 5(6), 29–34 (2010)

    Google Scholar 

  18. S. Manikandan, K.S. Rajan, Sand-propylene glycol–water nanofluids for improved solar energy collection. Energy 113, 917–929 (2016)

    Article  Google Scholar 

  19. K.S. Hong, T.K. Hong, H.S. Yang, Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl. Phys. Lett. 88(3), 031901 (2006)

    Article  ADS  Google Scholar 

  20. M. Karami, M.A. Akhavan-Behabadi, M.R. Dehkordi et al., Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation. Sol. Energy Mater. Sol. Cells 144, 136–142 (2016)

    Article  Google Scholar 

  21. A. Handbook, Physical properties of secondary coolants (Brines). ASHRAE 21, 21.6–21.7 (2005)

    Google Scholar 

  22. S. Witharana, I. Palabiyik, Z. Musina et al., Stability of glycol nanofluids—the theory and experiment. Powder Technol. 239, 72–77 (2013)

    Article  Google Scholar 

  23. W. Evans, R. Prasher, J. Fish et al., Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int. J. Heat Mass Transf. 51(5), 1431–1438 (2008)

    Article  MATH  Google Scholar 

  24. S.K. Sharma, S.M. Gupta, Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp. Thermal Fluid Sci. 79, 202–212 (2016)

    Article  Google Scholar 

  25. A. Ghadimi, R. Saidur, H.S.C. Metselaar, A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54(17), 4051–4068 (2011)

    Article  Google Scholar 

  26. Y.J. Hwang, Y.C. Ahn, H.S. Shin et al., Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr. Appl. Phys. 6(6), 1068–1071 (2006)

    Article  ADS  Google Scholar 

  27. D.H. Yoo, K.S. Hong, H.S. Yang, Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim. Acta 455(1), 66–69 (2007)

    Article  Google Scholar 

  28. H.E. Patel, T. Sundararajan, S.K. Das, An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J. Nanopart. Res. 12(3), 1015–1031 (2010)

    Article  ADS  Google Scholar 

  29. J.C. Maxwell, On Electricity and Magnetism. (Oxford University Press, Oxford, 1881)

    Google Scholar 

  30. R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two component systems. I&EC Fund 1(3), 187 (1962)

    Article  Google Scholar 

  31. Y. Xuan, Q. Li, W. Hu, Aggregation structure and thermal conductivity of nanofluids. Aiche J. 49(4), 1038–1043 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China, China National Petroleum Corporation Petrochemical Unite Funded Project (U1662106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, N., Zhang, Y., Wei, B. et al. Experimental investigation on optical and thermal properties of propylene glycol–water based nanofluids for direct absorption solar collectors. Appl. Phys. A 124, 569 (2018). https://doi.org/10.1007/s00339-018-1994-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1994-6

Navigation