Skip to main content

Advertisement

Log in

Enhanced engineered ZnO nanostructures and their antibacterial activity against urinary, gastrointestinal, respiratory and dermal genital infections

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Antimicrobial effect of nano-metal oxides especially ZnO NPs and their potent nanofluids against microorganisms have been studied in vitro conditions for years. Here, three kinds of gram-negative and eight gram-positive bacteria were applied investigating minimum inhibitory concentration, minimum bactericidal concentration and well-diffusion method of ZnO nanofluids against these pathogens. Gentamycin and nalidixic acid were then used as strong references in inhibition zone results. In this study, four different formulations of ZnO nanofluids containing various ZnO NPs (as basic scaffold framework) along with several effective chemical reagents in nanofluids were fabricated, whereas the best matched nanoformulation was very promising against Streptococcus pyogenes, Enterococcus faecalis and Escherichia coli. In such nanoformulation, the surface of ZnO NPs was functionalized or engineered with CNT-amine, and then formulated with ecofriendly ZnO nanopolymer (ZnO/PVP). The formulated ZnO/PVP could perform as a synergism co-assistant in final energetic nanofluid throughout the antibacterial activity tests. Final nanofluid was successfully contacted with interface of different bacteria cell membrane such as nosocomial, skin, urinary and bronchial in comparison with the controls. This new biofilm could create potential antimicrobial agents when ZnO nanofluid surround the bacteria and produce a new complex–matrix structure. Such event further disturbs reactive oxygen conductivity and effectively suppressed bacteria viability leading eventually to necrotic cell death. The high resistance in this long bioprocess system, provided special strong surface energy and powerful effectiveness of ZnO NPs in granting antimicrobial coating properties that make this formulation a new research opportunity for various industries addressing medical tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdolmohammadi MH, Fallahian F, Fakhroueian Z, Kamalian M, Keyhanvar PM, Harsini F, Shafiekhani A (2017) Application of new ZnO nanoformulation and Ag/Fe/ZnO nanocomposites as water-based nanofluids to consider in vitro cytotoxic effects against MCF-7 breast cancer cells. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2017.1290643

    Article  Google Scholar 

  • Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Review on the antimicrobial properties of carbon nanostructures. Materials 10:1066. https://doi.org/10.3390/ma10091066

    Article  CAS  Google Scholar 

  • Al-Shuja’a O, Abeer Obeid A, El-Shekeil Y, Hashim M, Al-Washali Z (2017) New strategy for chemically attachment of imine group on multi-walled carbon nanotubes surfaces: synthesis, characterization and study of DC electrical conductivity. J Mater Sci Chem Eng 5:11–21. http://www.scirp.org/journal/msce

    Article  Google Scholar 

  • Aminov RI (2013) Biotic acts of antibiotics. Front Microbiol 4(241):1–16. https://doi.org/10.3389/fmicb.2013.00241

    Article  Google Scholar 

  • Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19(6):842–852

    Article  CAS  Google Scholar 

  • Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CA, Rizzo J, Kenny JM, Imbriani M, Visai L (2014) The interaction of bacteria with engineered nanostructured polymeric materials: a review. Sci World J Article ID 410423:1–18. https://doi.org/10.1155/2014/410423

    Article  CAS  Google Scholar 

  • Bandekar G, Rajurkar NS, Mulla IS, Mulik UP, Amalnerkar DP, Adhyapak PV (2014) Synthesis, characterization and photocatalytic activity of PVP stabilized ZnO and modified ZnO nanostructures. Appl Nanosci 4:199–208. https://doi.org/10.1007/s13204-012-0189-2

    Article  CAS  Google Scholar 

  • Bayles KW (2014) Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol 12(1):63–69. https://doi.org/10.1038/nrmicro3136

    Article  CAS  Google Scholar 

  • Chakraborty SP, Sahu SK, Mahapatra SK, Santra S, Bal M, Roy S, Pramanik P (2010) Nano conjugated vancomycin: new opportunities for the development of anti-VRSA agents. Nanotechnology 21(10):1–9. https://doi.org/10.1088/0957-4484/21/10/105103

    Article  CAS  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588

    Article  CAS  Google Scholar 

  • Cockerill FR, Wikler MA, Alder J, Dudley MN, Eliopoulos GM, Ferraro MJ, Hardy DJ, Hecht DW, Hindler JA, Patel JB, Powell M, Thomson RB, Turnidge JD, Weinstein MP, Zimmer BL, Clinical and Laboratory Standards Institute (2011) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. Ninth Edition, Wayne, PA 19087, USA, vol 32(2), pp 1–21

  • Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, Das S, Dey SK, Das D, Roy S (2015) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 2015:1–15

    Google Scholar 

  • Ducel G, Fabry J, Nicolle L (2002) Prevention of hospital-acquired infections, a practical guide, 2nd edition, WHO/CDS/CSR/EPH/, pp 1–62. http://www.who.int/emc

  • Durmaz R, Durmaz B, Bayraktar M, Ozero IH, Kalcioglu MT, Aktas E, Cizmeci Z (2003) Prevalence of group a streptococcal carrier in asymptomatic children and clonal relatedness among isolates in Malatya Turkey. J Clin Microbiol 41(11):5285–5287

    Article  CAS  Google Scholar 

  • El-Diasty EM, Ahmed MA, Okasha N, Mansour N, El-Dek SI, Abd El-Khalek SF, Youssif HM (2013) Antifungal activity of zinc oxide nanoparticles against dermatophytic lesions of cattle. Roman J Biophys 23(3):191–202

    CAS  Google Scholar 

  • Emami-Karvani Z, Chehrazi P (2011) Antibacterial activity of ZnO nanoparticle on gram positive and gram-negative bacteria. Afr J Microbiol Res 5(12):1368–1373

    CAS  Google Scholar 

  • Fakhroueian Z, Harsini FM, Chalabian F, Katouzian F, Shafiekhani A, Esmaeilzadeh P (2013) Influence of modified ZnO quantum dots and nano structures as new anti bacterials. Adv Nanopart 2:247–258. https://doi.org/10.4236/anp.2013.23035

    Article  CAS  Google Scholar 

  • Fakhroueian Z, Dehshiri M, Katouzian A, Esmaeilzadeh F (2014) P. In vitro cytotoxic effects of modified zinc oxide quantum dots on breast cancer cell lines (MCF7), colon cancer cell lines (HT29) and various fungi. J Nanopart Res 16:2482–2495

    Article  Google Scholar 

  • Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ (2014) Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and Implications for public health. J Food Prot 77(1):150–170. https://doi.org/10.4315/0362-028X

    Article  CAS  Google Scholar 

  • Gaballa A, Helmann JD (1998) Identification of a zinc-specific metalloregulatory protein, zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 180(22):5815–5821

    CAS  Google Scholar 

  • Gold HS, Moellering RC (1996) Antimicrobial-drug resistance. N Engl J Med 333:1445–1453

    Article  Google Scholar 

  • Greenwood D, Slack R, Peutherer J (2007) Medical microbiology, A guide to microbial infections: pathogenesis, immunity. Laboratory diagnosis and control, 17th edn. Churchill Livingstone, London, pp 293–299

    Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316

    Article  CAS  Google Scholar 

  • Jehad MY, Enas ND (2012) In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J Health Sci 2(4):38–42. https://doi.org/10.5923/j.health.20120204.04

    Article  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    Article  CAS  Google Scholar 

  • Kerr KG, Snelling AM (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 73(4):338–344. https://doi.org/10.1016/j.jhin.2009.04.020 (Epub 2009 Aug 21)

    Article  CAS  Google Scholar 

  • Kollef MH, Shorr A, Tabak YP, Gupta V, Liu LZ, Johannes RS (2005) Epidemiology and outcomes of health-care-associated pneumonia: results from a large US database of culture-positive pneumonia. Chest 128(6):3854–3862

    Article  Google Scholar 

  • Krishnan R, Arumugam V, Vasaviah SK (2015) The MIC and MBC of silver nanoparticles against Enterococcus faecalis—a facultative anaerobe. J Nanomed Nanotechnol 6(3):1–4. https://doi.org/10.4172/2157-7439.1000285

    Article  CAS  Google Scholar 

  • Kummerfeldt CE (2014) Raxibacumab: potential role in the treatment of inhalational anthrax. Infect Drug Resist 7:101–109

    Article  Google Scholar 

  • Laurenti M, Cauda V (2017) ZnO nanostructures for tissue engineering applications. Nanomaterials 374:1–34. https://doi.org/10.3390/nano7110374M

    Article  Google Scholar 

  • Leung YH, Chan CMN, Ng AMC, Chan HT, Chiang MWL, Djurišić AB, Ng YH, Jim WY, Guo MY, Leung FCC, Chan WK, Au DTW (2012) Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination. Nanotechnol 23:475703

    Article  CAS  Google Scholar 

  • Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci (PNAS) USA 103(51):19484–19489

    Article  CAS  Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107(4):1193–1201. https://doi.org/10.1111/j.1365-2672.2009.04303.x

    Article  CAS  Google Scholar 

  • Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34(5):634–640

    Article  CAS  Google Scholar 

  • Lode HM (2009) Clinical impact of antibiotic-resistant gram-positive pathogens. Clin Microbiol Infect 15(3):212–217. https://doi.org/10.1111/j.1469-0691.2009.02738.x

    Article  CAS  Google Scholar 

  • Mauldin PD, Salgado CD, Hansen IS, Durup DT, Bosso JA (2010) Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob Agents Chemother 54(1):109–115

    Article  CAS  Google Scholar 

  • Mejàre B (1975) Streptococcus faecalis and Streptococcus faecium in infected dental root canals at filling and their susceptibility to azidocillin and some comparable antibiotics. Odontol Revy 26(3):193–204

    Google Scholar 

  • Mohamed RM, Shawky A (2018) CNT supported Mn-doped ZnO nanoparticles: simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light. Appl Nanosci 8:1179. https://doi.org/10.1007/s13204-018-0742-8

    Article  CAS  Google Scholar 

  • Muotiala A, Seppala H, Huovinen P, Vuopio-Varkila J (1997) Molecular comparison of group A streptococci of T1M1 serotype from invasive and noninvasive infections in Finland. J Infect Dis 175(2):392–399

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Dose the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  Google Scholar 

  • Peeters SH, de Jonge MI (2018) For the greater good: programmed cell death in bacterial communities. Microbiol Res 207:161–169. https://doi.org/10.1016/j.micres.2017.11.016

    Article  CAS  Google Scholar 

  • Périchon B, Courvalin P (2009) Van A-type vancomycin-resistant, Staphylococcus aureus. Antimicrob Agents Chemother 53(11):4580–4587. https://doi.org/10.1128/AAC.00346-09

    Article  CAS  Google Scholar 

  • Pinheiro ET, Gomes BPFA, Drucker DB, Zaia AA, Ferraz CCR, Souza-Filho FJ (2004) Antimicrobial susceptibility of Enterococcus faecalis isolated from canals of root filled teeth with periapical lesions. Int Endod J 37(11):756–763

    Article  CAS  Google Scholar 

  • Pratt RJ, Pellowe C, Loveday HP, Robinson N, Smith GW, Barrett S, Davey P, Harper P, Loveday C, McDougall C, Mulhall A, Privett S, Smales C, Taylor L, Weller B, Wilcox M, Department of Health (England) (2001) The epic project: developing national evidence-based guidelines for preventing healthcare associated infections. Phase I: Guidelines for preventing hospital-acquired infections. J Hosp Infect 47:Suppl S3–S82

    Google Scholar 

  • Premanathan M, Karthieyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward gram positive bacteria and cancer cell by apoptosis through lipid peroxidation. Nanomed Nanotechnol Biol Med 7(2):184–192. https://doi.org/10.1016/j.nano.2010.10.001

    Article  CAS  Google Scholar 

  • Raghupati KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028. https://doi.org/10.1021/la104825u

    Article  CAS  Google Scholar 

  • Rhomberg PR, Fritsche TR, Sader HS, Jones RN (2006) Antimicrobial susceptibility pattern comparisons among intensive care unit and general ward gram-negative isolates from the meropenem yearly susceptibility test information collection program (USA). Diagn Microbiol Infect Dis 56(1):57–62

    Article  CAS  Google Scholar 

  • Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133(12):4077–4082

    Article  CAS  Google Scholar 

  • Rubinstein E, Kollef MH, Nathwani D (2008) Pneumonia caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis 46(Suppl 5):S378–S385. https://doi.org/10.1086/533594

    Article  Google Scholar 

  • Selim AA, Al-Sunaidi A, Tabet N (2012) Effect of the surface texture and crystallinity of ZnO nanoparticles on their toxicity. Mater Sci Eng C 32(8):2356–2360

    Article  CAS  Google Scholar 

  • Slama TG (2008) Gram-negative antibiotic resistance: there is a price to pay. Crit Care 12(Suppl 4):S4. https://doi.org/10.1186/ccXXXX

    Article  Google Scholar 

  • Tumbarello M, Repetto E, Trecarichi EM, Bernardini C, De Pascale G, Parisini A, Rossi M, Molinari MP, Spanu T, Viscoli C, Cauda R, Bassetti M (2011) Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect 139(11):1740–1749. https://doi.org/10.1017/S0950268810003055

    Article  CAS  Google Scholar 

  • Wahab R, Mishra A, Yun SI, Kim YS, Shin HS (2010) Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl Microbiol Biotechnol 87(5):1917–1925

    Article  CAS  Google Scholar 

  • Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781

    Article  CAS  Google Scholar 

  • Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133(7):835–845. https://doi.org/10.1039/b715532h

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Fakhroueian.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest and are responsible for the content and writing of the new bacteria research and its manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhroueian, Z., Katouzian, F., Esmaeilzadeh, P. et al. Enhanced engineered ZnO nanostructures and their antibacterial activity against urinary, gastrointestinal, respiratory and dermal genital infections. Appl Nanosci 9, 1759–1773 (2019). https://doi.org/10.1007/s13204-019-00996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-00996-5

Keywords

Navigation