Skip to main content
Log in

Characterization of a Δ12-fatty acid desaturase gene from Ceriporiopsis subvermispora, a selective lignin-degrading fungus

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ceriporiopsis subvermispora, a white-rot fungus, is characterized as one of the best biopulping fungi because it can degrade lignin selectively without serious damage to cellulose. We previously demonstrated that during the early stage of wood decay, this fungus produces large amounts of linoleic acid (18:2n-6) and degrades lignin by manganese peroxidase-catalyzed lipid peroxidation. In this study, we cloned a Δ12-fatty acid desaturase gene absolutely essential for the biosynthesis of linoleic acid as the main substrate for lipid peroxidation. This gene designated Cs-fad2 encodes a protein with three histidine-rich domains and four membrane-spanning domains characteristic of other Δ12-fatty acid desaturases. Moreover, we heterologously expressed Cs-fad2 in Saccharomyces cerevisiae lacking Δ12-fatty acid desaturase, and detected the de novo biosynthesis of linoleic acid by gas chromatography–mass spectrometry analysis. We also investigated transcription of Cs-fad2 under various conditions. The transcription was activated and repressed in the presence of a lignin fragment and exogenous fatty acids, respectively. These results may shed light on the molecular relationship between fatty acid metabolism and selective lignin degradation in C. subvermispora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar PS, de Mendoza D (2006) Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 62:1507–1514

    Article  CAS  Google Scholar 

  • Amirta R, Fujimori K, Shirai N, Honda Y, Watanabe T (2003) Ceriporic acid C, a hexadecenylitaconate produced by a lignin-degrading fungus, Ceriporiopsis subvermispora. Chem Phys Lipids 126:121–131

    Article  CAS  Google Scholar 

  • Bao WL, Fukushima Y, Jensen KA, Moen MA, Hammel KE (1994) Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354:297–300

    Article  CAS  Google Scholar 

  • Buist PH (2004a) Catalytic diversity of fatty acid desaturases. Tetrahedron-Asymmetry 15:2779–2785

    Article  CAS  Google Scholar 

  • Buist PH (2004b) Fatty acid desaturases: selecting the dehydrogenation channel. Nat Prod Rep 21:249–262

    Article  CAS  Google Scholar 

  • Enoki M, Watanabe T, Nakagame S, Koller K, Messner K, Honda Y, Kuwahara M (1999) Extracellular lipid peroxidation of selective white-rot fungus, Ceriporiopsis subvermispora. FEMS Microbiol Lett 180:205–211

    Article  CAS  Google Scholar 

  • Enoki M, Watanabe T, Honda Y, Kuwahara M (2000) A novel fluorescent dicarboxylic acid, (Z)-1, 7-nonadecadiene-2, 3-dicarboxylic acid, produced by white-rot fungus Ceriporiopsis subvermispora. Chem Lett 1:54–55

    Article  Google Scholar 

  • Enoki M, Honda Y, Kuwahara M, Watanabe T (2002) Chemical synthesis, iron redox interactions and charge transfer complex formation of alkylitaconic acids from Ceriporiopsis subvermispora. Chem Phys Lipids 120:9–20

    Article  CAS  Google Scholar 

  • Gutierrez A, del Rio JC, Martinez-Inigo MJ, Martinez MJ, Martinez AT (2002) Production of new unsaturated lipids during wood decay by ligninolytic basidiomycetes. Appl Environ Microbiol 68:1344–1350

    Article  CAS  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  CAS  Google Scholar 

  • Jensen KA, Bao WL, Kawai S, Srebotnik E, Hammel KE (1996) Manganese-dependent cleavage of nonphenolic lignin structures by Ceriporiopsis subvermispora in the absence of lignin peroxidase. Appl Environ Microbiol 62:3679–3686

    CAS  Google Scholar 

  • Kajiwara S, Aritomi T, Suga K, Ohtaguchi K, Kobayashi O (2000) Overexpression of the OLE1 gene enhances ethanol fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:568–574

    Article  CAS  Google Scholar 

  • Kandasamy P, Vemula M, Oh CS, Chellappa R, Martin CE (2004) Regulation of unsaturated fatty acid biosynthesis in Saccharomyces—the endoplasmic reticulum membrane protein, Mga2p, a transcription activator of the OLE1 gene, regulates the stability of the OLE1 mRNA through exosome-mediated mechanisms. J Biol Chem 279:36586–36592

    Article  CAS  Google Scholar 

  • Kapich AN, Shishbina LN (1995) Lipid peroxidation and its regulation in the mycelium of xylotrophic basidiomycetes. Microbiology 64:266–271

    Google Scholar 

  • Kelder B, Mukerji P, Kirchner S, Hovanec G, Leonard AE, Chuang LT, Kopchick JJ, Huang YS (2001) Expression of fungal desaturase genes in cultured mammalian cells. Mol Cell Biochem 219:7–11

    Article  CAS  Google Scholar 

  • Kinney AJ, Cahoon EB, Hitz WD (2002) Manipulating desaturase activities in transgenic crop plants. Biochemi Soc Trans 30:1099–1103

    Article  CAS  Google Scholar 

  • Kirk TK, Croan S, Tien M, Murtagh KE, Farrell RL (1986) Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol 8:27–32

    Article  CAS  Google Scholar 

  • Lai LX, Kang JX, Li RF, Wang JD, Witt WT, Yong HY, Hao YH, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai YF (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24:435–436

    Article  CAS  Google Scholar 

  • Mansilla MC, Banchio CE, de Mendoza D (2008) Signalling pathways controlling fatty acid desaturation. Subcell Biochem 49:71–99

    Article  Google Scholar 

  • Martin CE, Oh CS, Jiang YD (2007) Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta 1771:271–285

    CAS  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  Google Scholar 

  • Minto RE, Blacklock BJ, Younus H, Pratt AC (2009) Atypical biosynthetic properties of a Δ12/ν + 3 desaturase from the model basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 75:1156–1164

    Article  CAS  Google Scholar 

  • Murphy DJ, Piffanelli P (1998) Fatty acid desaturases: structure, mechanism and regulation. In: Harwood JL (ed) Plant lipid biosynthesis fundamentals and agricultural applications. Cambridge University Press, Cambridge, pp 95–130

    Google Scholar 

  • Nakamura MT, Nara TY (2004) Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Ann Rev Nutr 24:345–376

    Article  CAS  Google Scholar 

  • Nakamura MT, Cheon Y, Li Y, Nara TY (2004) Mechanism of regulation of gene expression by fatty acids. Lipids 39:1077–1083

    Article  CAS  Google Scholar 

  • Napier JA, Haslam R, Caleron MV, Michaelson LV, Beaudoin F, Sayanova O (2006) Progress towards the production of very long-chain polyunsaturated fatty acid in transgenic plants: plant metabolic engineering comes of age. Physiol Plant 126:398–406

    Article  CAS  Google Scholar 

  • Nishimura H, Tsuda S, Shimizu H, Ohashi Y, Watanabe T, Honda Y, Watanabe T (2008) De novo synthesis of (Z)- and (E)-7-hexadecenylitaconic acids by a selective lignin-degrading fungus, Ceriporiopsis subvermispora. Phytochemistry 69:2593–2602

    Article  CAS  Google Scholar 

  • Nishimura H, Murayama K, Watanabe T, Honda Y, Watanabe T (2009) Absolute configuration of ceriporic acids, the iron redox-silencing metabolites produced by a selective lignin-degrading fungus, Ceriporiopsis subvermispora. Chem Phys Lipids 159:77–80

    Article  CAS  Google Scholar 

  • Ohashi Y, Kan Y, Watanabe T, Honda Y, Watanabe T (2007) Redox silencing of the Fenton reaction system by an alkylitaconic acid, ceriporic acid B produced by a selective lignin-degrading fungus, Ceriporiopsis subvermispora. Org Biomol Chem 5:840–847

    Article  CAS  Google Scholar 

  • Paltauf F, Kohlwein SD (1992) Regulation and compartmentalization of lipid synthesis in yeast. In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces: gene expression, vol. II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 415–500

    Google Scholar 

  • Passorn S, Laoteng K, Rachadawong S, Tanticharoen M, Cheevadhanarak S (1999) Heterologous expression of Mucor rouxii Δ12-desaturase gene in Saccharomyces cerevisiae. Biochem Biophys Res Commun 263:47–51

    Article  CAS  Google Scholar 

  • Raeder U, Broda P (1988) Preparation and characterization of DNA from ligin-degrading fungi. Methods Enzymol 161:211–220

    Article  CAS  Google Scholar 

  • Rahmawati N, Ohashi Y, Watanabe T, Honda Y, Watanabe T (2005) Ceriporic acid B, an extracellular metabolite of Ceriporiopsis subvermispora, suppresses the depolymerization of cellulose by the Fenton reaction. Biomacromolecules 6:2851–2856

    Article  CAS  Google Scholar 

  • Saeki K, Matsumoto K, Kinoshita M, Suzuki I, Tasaka Y, Kano K, Taguchi Y, Mikami K, Hirabayashi M, Kashiwazaki N, Hosoi Y, Murata N, Iritani A (2004) Functional expression of a Δ12 fatty acid desaturase gene from spinach in transgenic pigs. Proc Natl Acad Sci USA 101:6361–6366

    Article  CAS  Google Scholar 

  • Sakai H, Kajiwara S (2005) Cloning and functional characterization of a Δ12 fatty acid desaturase gene from the basidiomycete Lentinula edodes. Mol Genet Genomics 273:336–341

    Article  CAS  Google Scholar 

  • Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999) Identification of Δ12-fatty acid desaturase from arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261:812–820

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sethuraman A, Akin DE, Eisele JG, Eriksson KEL (1998) Effect of aromatic compounds on growth and ligninolytic enzyme production of two white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Can J Microbiol 44:872–885

    Article  CAS  Google Scholar 

  • Shimizu M, Yuda N, Nakamura T, Tanaka H, Wariishi H (2005) Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin. Proteomics 5:3919–3931

    Article  CAS  Google Scholar 

  • Stukey JE, McDonough VM, Martin CE (1989) Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem 264:16537–16544

    CAS  Google Scholar 

  • Suutari M, Laakso S (1994) Microbial fatty-acids and thermal adaptation. Crit Rev Microbiol 20:285–328

    Article  CAS  Google Scholar 

  • Tai D, Terazawa M, Chen CL, Chang H (1990) Lignin biodegradation products from birch wood decayed by Phanerochaete chrysosporium. 2. The constituents of ether-soluble low-molecular weight fractions. Holzforschung 44:257–262

    Article  CAS  Google Scholar 

  • Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2005a) Improvement of the fatty acid composition of an oil-producing filamentous fungus, Mortierella alpina 1S-4, through RNA interference with Δ12-desaturase gene expression. Appl Environ Microbiol 71:5124–5128

    Article  CAS  Google Scholar 

  • Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Shimizu S (2005b) Transformation of oil-producing fungus, Mortierella alpina 1S-4, using zeocin, and application to arachidonic acid production. J Biosci Bioeng 100:617–622

    Article  CAS  Google Scholar 

  • Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27:467–473

    Article  CAS  Google Scholar 

  • Watanabe T, Katayama S, Enoki M, Honda Y, Kuwahara M (2000) Formation of acyl radical in lipid peroxidation of linoleic acid by manganese-dependent peroxidase from Ceriporiopsis subvermispora and Bjerkandera adusta. Eur J Biochem 267:4222–4231

    Article  CAS  Google Scholar 

  • Watanabe T, Shirai N, Okada H, Honda Y, Kuwahara M (2001) Production and chemiluminescent free radical reactions of glyoxal in lipid peroxidation of linoleic acid by the ligninolytic enzyme, manganese peroxidase. Eur J Biochem 268:6114–6122

    Article  CAS  Google Scholar 

  • Watanabe T, Teranishi H, Honda Y, Kuwahara M (2002) A selective lignin-degrading fungus, Ceriporiopsis subvermispora, produces alkylitaconates that inhibit the production of a cellulolytic active oxygen species, hydroxyl radical in the presence of iron and H2O2. Biochem Biophys Res Commun 297:918–923

    Article  CAS  Google Scholar 

  • Yamada T, Shimoi H, Ito K (2005) High expression of unsaturated fatty acid synthesis gene OLE1 in sake yeasts. J Biosci Bioeng 99:512–516

    Article  CAS  Google Scholar 

  • Zhang YM, Zhu K, Frank FW, Rock CO (2007) A Pseudomonas aeruginosa transcription factor that senses fatty acid structure. Mol Microbiol 66:622–632

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Grant-in-Aid for Young Scientists (B) (Nos. 16780125 and 18780132) from the Ministry of Education, Science, Sports, and Culture (to Takahito Watanabe), and the Advanced Research Program from Research Institute of Innovative Technology for the Earth (RITE; to Takashi Watanabe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, T., Tsuda, S., Nishimura, H. et al. Characterization of a Δ12-fatty acid desaturase gene from Ceriporiopsis subvermispora, a selective lignin-degrading fungus. Appl Microbiol Biotechnol 87, 215–224 (2010). https://doi.org/10.1007/s00253-010-2438-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2438-1

Keywords

Navigation