Skip to main content
Log in

Genetic analysis of the phosphinothricin-tripeptide biosynthetic pathway of Streptomyces viridochromogenes Tü494

  • Applied Genetics and Regulation
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Streptomyces viridochromogenes Tü494 produces the antibiotic phosphinothricyl-alanyl-alanine (Ptt). Ptt-non-producing mutants were isolated following N-methyl-N′-nitro-N-nitrosoguanidine (NTG) or UV light treatment of spore suspensions. In co-synthesis and bioconversion experiments the mutational blocks in the biosynthetic pathway were localized. The mutant NTG1 was analysed in detail. This mutant acts as a secretor for all other mutants. From bioconversion experiments with presumptive precursors circumstantial evidence was obtained that NTG1 is mutated in a gene involved in the alanylation of N-acetyl-demethyl-phosphinothricin. Using a cosmid gene library the DNA region complementing the defective gene of mutant NTG1 was isolated on a 4-kb BamHI fragment. Subcloning experiments showed that a 3-kb BglII/BamHI fragment is sufficient for complementation of mutant NTG1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baltz RH, Stonesifer J (1985) Phenotypic changes associated with loss of expression of tylosin biosynthesis and resistance genes in Streptomyces fradiae. J Antibiot 38:1226–1236.

    Google Scholar 

  • Bayer E, Gugel KH, Hagenmeier H, Jessipow S, König WA, Zähner H (1972) Stoffwechselprodukte von Mikroorganismen. Phosphinothricin und Phosphinothricyl-alanyl-alanin. Helv Chim Acta 55:224–239.

    Google Scholar 

  • Bibb MJ, Ward JM, Hopwood DA (1978) Transformation of plasmid DNA into Streptomyces at high frequencies. Nature 274:398–400.

    Google Scholar 

  • Chater KF, Hopwood DA, Kieser T, Thompson CJ (1982) Gene cloning in Streptomyces. Curr Top Microbiol Immunol 96:69–95.

    Google Scholar 

  • Clarke CH, Hopwood DA (1976) Ultraviolet mutagenesis in Streptomyces coelicolor: induction of reversions in a polyauxotrophic strain. Mutat Res 41:201–208.

    Google Scholar 

  • Cohen SN, Chang ACY, Hsu L (1972) Non chromosomal antibiotic resistance in bacteria: genetic transformation of E. coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114.

    CAS  PubMed  Google Scholar 

  • Cox KL (1986) The use of recombinant DNA techniques to study tylosin biosynthesis and resistance in Streptomyces fradiae. J Nat Prod 49:971–980.

    Google Scholar 

  • Delic V, Pigac J, Sermonti G (1969) Detection and study of cosynthesis of tetracycline antibiotics by an agar method. J Gen Microbiol 55:103–108.

    Google Scholar 

  • Delic V, Hopwood DA, Friend EJ (1970) Mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine (NTG) in Streptomyces coelicolor. Mutat Res 9:167–182.

    Google Scholar 

  • Diddens H, Zähner H, Kraas E, Göhring W, Jung G (1976) On the transport of tripeptide antibiotics in bacteria. Eur J Biochem 66:11–23.

    Google Scholar 

  • Furumai T, Takeda K, Okanishi M (1982) Function of plasmids in the production of aureothricin. I. Elimination of plasmids and alteration of phenotypes caused by protoplast regeneration in Streptomyces kasugaensis. J Antibiot 35:1367–1373.

    Google Scholar 

  • Grunstein M, Hogness DS (1975) Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72:3961–3965.

    Google Scholar 

  • Hara O, Anzai H, Imai S, Kumada Y, Murakami T, Itoh R, Takano E, Satoh A, Nagaoka K (1988) The bialaphos biosynthetic genes of Streptomyces hygroscopicus: cloning and analysis of the genes involved in the alanylation step. J Antibiot 41:538–547.

    Google Scholar 

  • Hohn B, Collins J (1980) A small cosmid for efficient cloning of large DNA fragments. Gene 11:291–298.

    Google Scholar 

  • Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197.

    Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. John Innes Foundation, Norwich.

    Google Scholar 

  • Ichikawa T, Date M, Ishikura T, Ozaki S (1971) Improvement of kasugamycin-producing strains by the agar piece method and prototroph method. Folia Microbiol 16:218–224.

    Google Scholar 

  • Imai S, Seto H, Sasaki T, Tsuruoka T, Ogawa H, Satoh A, Inouye S, Niida T, Otake N (1985) Studies on the biosynthesis of bialaphos (SF-1293). 6. Production of N-acetyl-demethylphosphinothricin and N-acetyl-bialaphos by blocked mutants of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. J Antibiot 38:687–690.

    Google Scholar 

  • Kieser T (1984) Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli. Plasmid 12:223–238.

    Google Scholar 

  • Kondo Y, Shomura T, Ogawa Y, Tsuruoka T, Watanabe H, Totsukawa K, Suzuki T, Moriyama C, Yoshida J, Inouye I, Niida T (1973) Studies on a new antibiotic SF-1293. I. Isolation and physico-chemical and biological characterization of SF-1293 substances. Sci Rep Meiyi Seika Kaisha 13:34–41.

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.

    Google Scholar 

  • Murakami T, Anzai H, Imai S, Satoh A, Nagaoka K, thompson CJ (1986) The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol Gen Genet 205:42–50.

    Google Scholar 

  • Muth G, Nussbaumer B, Wohlleben W, Pühler A (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348.

    Google Scholar 

  • Okanishi M, Suzuki K, Umezawa H (1974) Formation and reversion of streptomycete protoplasts: cultural conditions and morphological study. J Gen Microbiol 80:389–400.

    Google Scholar 

  • Rhodes PM, Winskill N, Friend EJ, Warren M (1981) Biochemical and genetic characterization of Streptomyces rimosus impaired in oxytetracycline biosynthesis. J Gen Microbiol 124:329–338.

    Google Scholar 

  • Seto H, Imai S, Tsuruoka T, Ogawa H, Satoh A, Sasaki T, Otake N (1983) Studies on the biosynthesis of bialaphos (SF-1293). III. Production of phosphonic acid derivatives MP-103, MP-104 and MP-105 by a blocked mutant of Streptomyces hygroscopicus SF1293 and their roles in the biosynthesis of bialaphos. Biochem Biophys Res Commun 111:1008–1014.

    Google Scholar 

  • Ward JM, Janssen GR, Buttner MJ, Bibb MJ (1986) Construction and characterization of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203:468–478.

    Google Scholar 

  • Weber JH, Wierman CK, Hutchinson CR (1985) Genetic analysis of erythromycin production in Streptomyces erythreus. J Bacteriol 164:425–433.

    CAS  PubMed  Google Scholar 

  • Wohlleben W, Muth G, Birr E, Pühler A (1986) A vector system for cloning in Streptomyces and Escherichia coli. In: Szabo G, Biro S, Goodfellow M (eds) Sixth International Symposium on Actinomycetes Biology. Akademiai Kiado, Budapest, pp 99–101.

    Google Scholar 

  • Wohlleben W, Arnold W, Broer I, Hillemann D, Strauch E, Pühler A (1988) Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum. Gene 70:25–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Susanne Müller

Offprint requests to: W. Wohlleben

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alijah, R., Dorendorf, J., Talay, S. et al. Genetic analysis of the phosphinothricin-tripeptide biosynthetic pathway of Streptomyces viridochromogenes Tü494. Appl Microbiol Biotechnol 34, 749–755 (1991). https://doi.org/10.1007/BF00169345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00169345

Keywords

Navigation