Skip to main content
Log in

Bioprospecting for microbial products that affect ice crystal formation and growth

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

At low temperatures, some organisms produce proteins that affect ice nucleation, ice crystal structure, and/or the process of recrystallization. Based on their ice-interacting properties, these proteins provide an advantage to species that commonly experience the phase change from water to ice or rarely experience temperatures above the melting point. Substances that bind, inhibit or enhance, and control the size, shape, and growth of ice crystals could offer new possibilities for a number of agricultural, biomedical, and industrial applications. Since their discovery more than 40 years ago, ice nucleating and structuring proteins have been used in cryopreservation, frozen food preparation, transgenic crops, and even weather modification. Ice-interacting proteins have demonstrated commercial value in industrial applications; however, the full biotechnological potential of these products has yet to be fully realized. The Earth’s cold biosphere contains an almost endless diversity of microorganisms to bioprospect for microbial compounds with novel ice-interacting properties. Microorganisms are the most appropriate biochemical factories to cost effectively produce ice nucleating and structuring proteins on large commercial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abyzov SS, Mitskevich IN, Poglazova MN (1998) Microflora of the deep glacier horizons of central Antarctica. Microbiology (Moscow) 67:66–73

    Google Scholar 

  • Amato P, Christner BC (2009) Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol 75:711–718

    CAS  Google Scholar 

  • Amato P, Doyle SM, Christner BC (2009) Macromolecular synthesis by yeasts under frozen conditions. Environ Microbiol 11:589–596

    CAS  Google Scholar 

  • Ariya PA, Sun J, Eltouny NA, Hudson ED, Hayes CT, Kos G (2009) Physical and chemical characterization of bioaerosols—implications for nucleation processes. Int Rev Phys Chem 28:1–32

    CAS  Google Scholar 

  • Arny DC, Lindow SE, Upper CD (1976) Frost sentivity of corn increased by application of Pseudomonas syringae. Nature 262:282–284

    Google Scholar 

  • Bagis H, Aktoprakligil D, Mercan HO, Yurdusev N, Turgut G, Sekmen S, Arat S, Cetin S (2006) Stable transmission and transcription of Newfoundland ocean pout type III fish antifreeze protein (AFP) gene in transgenic mice and hypothermic storage of transgenic ovary and testis. Mol Repro Develop 73:1404–1411

    CAS  Google Scholar 

  • Bidle KD, Lee S, Marchant DR, Falkowski PG (2007) Fossil genes and microbes in the oldest ice on Earth. Proceed Natl Acad Sci 104:13455–13460

    CAS  Google Scholar 

  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MWW, Kelley RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotech 19:210–217

    CAS  Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    CAS  Google Scholar 

  • Brown MV, Bowman JP (2006) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). Microb Ecol 35:267–275

    Google Scholar 

  • Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517

    CAS  Google Scholar 

  • Cavicchioli R (2006) Cold-adapted archaea. Nature Rev Microbiol 4:331–343

    CAS  Google Scholar 

  • Chao H, Deluca CI, Davies PL (1995) Mixing antifreeze protein types changes ice crystal morphology without affecting antifreeze activity. FEBS Lett 357:183–186

    CAS  Google Scholar 

  • Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at -15°C. Appl Environ Microbiol 68:6435–6438

    CAS  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577

    CAS  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JR (2003) Bacterial recovery from ancient glacial ice. Environ Microbiol 5:433–436

    CAS  Google Scholar 

  • Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M, Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501

    Google Scholar 

  • Christner BC, Morris CE, Foreman CM, Cai R, Sands DC (2008a) Ubiquity of biological ice nucleators in snowfall. Science 319:1214

    CAS  Google Scholar 

  • Christner BC, Cai R, Morris CE, McCarter KS, Foreman CM, Skidmore ML, Montross SN, Sands DC (2008b) Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. PNAS USA 105:18854–18859

    CAS  Google Scholar 

  • Clarke CJ, Buckley SL, Lindner N (2002) Ice structuring proteins—a new name for antifreeze proteins. Cryo Lett 23:89–92

    CAS  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    CAS  Google Scholar 

  • Dahl SLM, Chen Z, Solan AK, Brockbank KGM, Niklason LE, Song YC (2006) Feasibility of vitrification as a storage method for tissue-engineered blood vessels. Tissue Eng 12:291–300

    CAS  Google Scholar 

  • Davies PL, Hew CL (1990) Biochemistry of fish antifreeze proteins. FASEB J 4:2460–2468

    CAS  Google Scholar 

  • Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Phil Trans R Soc Lond 357:927–935

    CAS  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    CAS  Google Scholar 

  • DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    CAS  Google Scholar 

  • Dumont F, Marechal P-A, Gervais P (2004) Cell size and water permeability as determining factors for cell viability after freezing at different cooling rates. Appl Environ Microbiol 70:268–272

    CAS  Google Scholar 

  • Fahy GM (1995) The role of nucleation in cryopreservation. In: Lee RE Jr, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS Press, St. Paul, MN, pp 315–336

    Google Scholar 

  • Fall R, Wolber PK (1995) Biochemistry of bacterial ice nuclei. In: Lee RE Jr, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS Press, St. Paul, MN, pp 63–83

    Google Scholar 

  • Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb Ecol 47:329–340

    CAS  Google Scholar 

  • Gaidos E, Lanoil B, Thorsteinsson T, Graham A, Skidmore ML, Han S-K, Rust T, Popp B (2004) A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4:327–344

    CAS  Google Scholar 

  • Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL (2008) A Ca2+-dependent bacterial antifreeze protein domain has a novel β-helical ice-binding fold. Biochem J 411:171–180

    CAS  Google Scholar 

  • Gilbert JA, Hill PJ, Dodd CER, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiol 150:171–180

    CAS  Google Scholar 

  • Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245:67–72

    CAS  Google Scholar 

  • Graether SP, Jia Z (2001) Modeling Pseudomonas syringae ice-nucleation protein as a β-helical protein. Biophys J 80:1169–1173

    CAS  Google Scholar 

  • Graether SP, Kuiper MJ, Gagne SM, Walker VK, Jia Z, Sykes BD, Davies PL (2000) β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406:325–327

    CAS  Google Scholar 

  • Graham LA, Liou Y-C, Walker VK, Davies PL (1997) Hyperactive antifreeze protein from beetles. Nature 388:727–728

    CAS  Google Scholar 

  • Gurian-Sherman D, Lindow SE (1993) Bacterial ice nucleation: significance and molecular basis. FASEB J 7:1338–1343

    CAS  Google Scholar 

  • Hendricks D, Ward PJ, Orrego SA (1992) Production of microorganisms having ice nucleation activity. U.S. patent 5, 137, 815

  • Hirano SS, Upper CD (1995) Ecology of ice nucleation-active bacteria. In: Lee RE Jr, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS, St. Paul, MN, pp 41–61

    Google Scholar 

  • Hoshino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya Y, Yumoto I, Tsuda S (2003) Antifreeze proteins from snow mold fungi. C J Bot 81:1175–1181

    CAS  Google Scholar 

  • Huston AL (2008) Biotechnological aspects of cold-adapted enzymes. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer-Verlag, Heidelberg, Germany, pp 347–363

    Google Scholar 

  • Hwang WZ, Coetzer C, Turner NE, Lee TC (2001) Expression of a bacterial ice nucleation gene in a yeast Saccharomyces cerevisiae and its possible application in food freezing processes. J Agr Food Chem 49:4662–4666

    CAS  Google Scholar 

  • Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416

    CAS  Google Scholar 

  • Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Brand T, Gilbert MT, Zuber MT, Bunce M, Rønn R, Gilichinsky D, Froese D, Willerslev E (2007) Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci 36:14401–14405

    Google Scholar 

  • Junge K, Imhoff F, Staley T, Deming JW (2002) Phylogenetic diversity of numerically important Arctic Sea-ice bacteria cultured at subzero temperature. Microb Ecol 43:315–328

    CAS  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at -2 to -20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    CAS  Google Scholar 

  • Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to -20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429

    CAS  Google Scholar 

  • Kajava AV (1995) Molecular modeling of the three-dimensional structure of bacterial ina proteins. In: Lee RE Jr, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS Press, St. Paul, MN, pp 101–114

    Google Scholar 

  • Kang J-S, Raymond JA (2004) Reduction of freeze-thaw-induced hemolysis of red blood cells by an algal ice-binding protein. Cryo Lett 25:307–310

    CAS  Google Scholar 

  • Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147

    CAS  Google Scholar 

  • Kawahara H (2008) Cryoprotectants and ice-binding proteins. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer-Verlag, Heidelberg, Germany, pp 229–246

    Google Scholar 

  • Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295–296

    CAS  Google Scholar 

  • Knight CA, Cheng CC, DeVries AL (1991) Adsorption of α-helical antifreeze peptides on specific crystal surface planes. Biophys J 59:409–418

    CAS  Google Scholar 

  • Kuiper MJ, Lankin C, Gauthier SY, Walker VK, Davies PL (2003) Purification of antifreeze proteins by adsorption to ice. Biochem Biophys Res Comm 300:645–648

    CAS  Google Scholar 

  • LaDuca RJ, Rice AF, Ward PJ (1995) Applications of biological ice nucleators in spray-ice technology. In: Lee RE Jr, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS, St. Paul, MN, pp 337–350

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    CAS  Google Scholar 

  • Liu K, Jia Z, Chen G, Tung C, Liu R (2005) Systematic size study of an insect antifreeze protein and its interaction with ice. Biophys J 88:953–958

    CAS  Google Scholar 

  • Lundheim R (2002) Physiological and ecological significance of biological ice nucleators. Philos Trans R Soc London 357:937–943

    CAS  Google Scholar 

  • Mader HM, Pettit ME, Wadham JL, Wolff EW, Parkes RJ (2006) Subsurface ice as a microbial habitat. Geology 34:169–172

    CAS  Google Scholar 

  • Maki LR, Galyan EL, Caldwell M-M (1974) Ice nucleation induced by Pseudomonas syringae. Appl Microbiol 28:456–459

    CAS  Google Scholar 

  • Margaritis A, Bassi AS (1991) Principles and biotechnological applications of bacterial ice nucleation. Crit Rev Biotechnol 11:277–295

    CAS  Google Scholar 

  • Marshall CB, Fletcher GL, Davies PL (2004) Hyperactive antifreeze protein in a fish. Nature 429:153

    CAS  Google Scholar 

  • Martínez-Páramo S, Barbosa V, Perez-Cerezales S, Robles V, Herraez MP (2008) Cryoprotective effects of antifreeze proteins delivered into zebrafish embryos. Cryobiol 58:128–133

    Google Scholar 

  • Marx J-C, Collines T, D’Amico S, Feller G, Gerday C (2007) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotech 9:293–304

    CAS  Google Scholar 

  • Middleton AJ, Brown AM, Davies PL, Walker VK (2009) Identification of the ice-binding face of a plant antifreeze protein. FEBS Letters 583:815–819

    CAS  Google Scholar 

  • Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324:397–400

    CAS  Google Scholar 

  • Mishima O, Stanley HE (1998) The relationship between liquid, supercooled and glassy water. Nature 396:329–335

    CAS  Google Scholar 

  • Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120, 000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818

    CAS  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213

    CAS  Google Scholar 

  • Morita RY (1988) Bioavailability of energy and its relationship to growth and starvation survival in nature. Can J Microbiol 34:436–441

    CAS  Google Scholar 

  • Morita RY (1997) Bacteria in oligotrophic environments. Chapman & Hall, New York

    Google Scholar 

  • Morris CE, Georgakopoulos DG, Sands DC (2004) Ice nucleation active bacteria and their potential role in precipitation. J de Physique IV- France 121:87–103

    Google Scholar 

  • Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, Thompson B (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2:321–334

    CAS  Google Scholar 

  • Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish MW, Griffith M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12–2. J Bacteriol 186:5661–5671

    CAS  Google Scholar 

  • Orser C, Staskawicz BJ, Panopoulos NJ, Dahlbeck D, Lindow SE (1985) Cloning and expression of bacterial ice nucleation genes in Escherichia coli. J Bacteriol 164:359–366

    CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    CAS  Google Scholar 

  • Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to -35°C. FEMS Microbiol Ecol 59:500–512

    Article  CAS  Google Scholar 

  • Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below -39°C. Soil Biol Biochem 38:785–794

    CAS  Google Scholar 

  • Philip BN, Yi S-X, Elnitsky MA, Lee RE Jr (2008) Aquaporins play a role in desiccation and freeze tolerance in larvae of the goldenrod gall fly, Eurosta solidaginis. J Exper Biol 211:1114–1119

    CAS  Google Scholar 

  • Pratt KA, DeMott PJ, French JR, Wang Z, Westphal DL, Heymsfield AJ, Twohy CH, Prenni AJ, Prather KA (2009) In situ detection of biological particles in cloud ice-crystals. Nature Geosci 2:398–401

    CAS  Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251

    CAS  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636

    CAS  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial biodiversity and bioprospecting. American Society for Microbiology, Washington, DC, pp 130–145

    Google Scholar 

  • Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirschtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144

    CAS  Google Scholar 

  • Priscu JC, Tulaczyk S, Studinger M, Kennicutt MC, Christner BC, Foreman CM (2008) Antarctic subglacial water: origin, evolution and microbial ecology. In Vincent W, Laybourn-Parry J (eds) Polar limnology. Oxford University Press, pp 119–135

    Google Scholar 

  • Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation, 2nd edn. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 74:2589–2593

    CAS  Google Scholar 

  • Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiol 43:63–70

    CAS  Google Scholar 

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221

    CAS  Google Scholar 

  • Raymond JA, Christner BC, Schuster SC (2008) An ice-adapted bacterium from the Vostok ice core. Extremophiles 12:713–717

    CAS  Google Scholar 

  • Raymond JA, Janech MG, Fritsen CH (2009) Novel ice-binding proteins from a psychrophilic Antarctic alga (Chlamydomonadaceae, Chlorophyceae). J Phycol 45:130–136

    CAS  Google Scholar 

  • Regand A, Goff HD (2006) Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J Dairy Sci 89:49–57

    Article  CAS  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    CAS  Google Scholar 

  • Sands DC, Langhans VE, Scharen AL, de Smet G (1982) The association between bacteria and rain and possible resultant meteorological implications. J Hungarian Meteorol Serv 86:148–152

    Google Scholar 

  • Sead D, Park SF (2000) Roles of Fe superoxide dismutase in resistance of Campylobacter coli to freeze-thaw stess. Appl Environ Microbiol 66:3110–3112

    Google Scholar 

  • Schnell RC, Vali G (1973) World-wide source of leaf-derived freezing nuclei. Nature 246:212–213

    Google Scholar 

  • Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110

    CAS  Google Scholar 

  • Shatwell T, Köhler J, Nicklisch A (2008) Warming promotes cold-adapted phytoplankton in temperate lakes and opens a loophole for Oscillatoriales in spring. Glob Change Biol 14:2194–2200

    Google Scholar 

  • Sheridan PP, Miteva VI, Brenchley JE (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl Environ Microbiol 69:2153–2160

    CAS  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a High Arctic glacier. Appl Environ Microbiol 66:3214–3220

    CAS  Google Scholar 

  • Skidmore ML, Anderson SP, Sharp MJ, Foght JM, Lanoil BD (2005) Comparison of microbial community composition in two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71:6986–6997

    CAS  Google Scholar 

  • Tanghe A, Van Diuck P, Thevelein JM (2003) Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Adv Appl Microbiol 53:129–176

    CAS  Google Scholar 

  • Tegos G, Vargas C, Perysinakis A, Koukkou AI, Christogianni A, Nieto JJ, Ventosa A, Drainas C (2000) Release of cell-free ice nuclei from Halomonas elongata expressing the ice nucleation gene inaZ of Pseudomonas syringae. J Appl Microbiol 89:785–792

    CAS  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microbial Cell Factories 6:9

    Google Scholar 

  • Unsworth LD, van der Oost J, Koutsopoulos S (2007) Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications. FEBS J 274:4044–4056

    CAS  Google Scholar 

  • van Zee K, Baertlein DA, Lindow SE, Panopoulos N, Chen THH (1996) Cold requirement for maximal activity of the bacterial ice nucleation protein INAZ in transgenic plants. Plant Mol Biol 30:207–211

    Google Scholar 

  • Venketesh S, Dayananda C (2008) Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotech 28:57–82

    CAS  Google Scholar 

  • Vishnivetskaya TA, Petrova MA, Urbance J, Ponder M, Moyer CL, Gilichinsky DA, Tiedje JM (2006) Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6:400–414

    CAS  Google Scholar 

  • Walker VK, Palmer GR, Voordouw G (2006) Freeze-thaw tolerance and clues to winter survival of a soil community. Appl Environ Microbiol 72:1784–1792

    CAS  Google Scholar 

  • Wantanabe M, Arai S (1995) Applications of bacterial ice nucleation activity in food processing. In: Lee RE Jr, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS, St. Paul, MN, pp 299–313

    Google Scholar 

  • Ward PJ, DeMott PJ (1989) Preliminary experimental evaluation of Snomax™ snow inducer, Pseudomonas syringae, as an artificial ice nucleus for weather modification. J Weather Mod 21:9–13

    Google Scholar 

  • Wen-li X, Mei-qin L, Xin S, Cun-fu L (2005) Expression of a carrot 36 kD antifreeze protein gene improves cold stress in transgenic tobacco. For Stud China 7:11–15

    Google Scholar 

  • Wharton DA, Barrett J, Goodall G, Marshall CJ, Ramlov H (2005) Ice-active proteins from the Antarctic nematode Panagrolaimus davidi. Cryobiol 51:198–207

    CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    CAS  Google Scholar 

  • Wienzirl J, Gerdeman AE (1929) The bacterial count of ice cream held at freezing temperatures. J Dairy Sci 12:182–189

    Article  Google Scholar 

  • Woerpel MD (1980) Snow making. US patent no. 4200228

  • Zhang D-Q, Liu D-R Feng B, He Y-M, Wang S-Q, Wang H-B, Wang J-F (2004) Significance of conservative asparagine residues in the thermal hysteresis activity of carrot antifreeze protein. Biochem J 377:589–595

    CAS  Google Scholar 

  • Zhongqin W, Qin L, Walker VK (2009) Characterization and recombinant expression of a divergent ice nucleation protein from ‘Pseudomonas borealis’. Microbiol 155:1164–1169

    Google Scholar 

  • Zhu J, Dong C-H, Zhu J-K (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Cur Opin Plant Biol 10:290–295

    CAS  Google Scholar 

Download references

Acknowledgments

My interest in microbial ice-interacting proteins is a direct result of fruitful discussions and collaborations with James Raymond, Cindy Morris, and David Sands. Research in my laboratory on this topic has been supported by the National Science Foundation (EAR-0525567 and OPP-0636828) and Louisiana State University Office of Research and Economic Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent C. Christner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christner, B.C. Bioprospecting for microbial products that affect ice crystal formation and growth. Appl Microbiol Biotechnol 85, 481–489 (2010). https://doi.org/10.1007/s00253-009-2291-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2291-2

Keywords

Navigation