Skip to main content
Log in

Unveiling characteristics of a bioelectrochemical system with polarity reversion for simultaneous azo dye treatment and bioelectricity generation

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel bioelectrochemical system (BES) operated with polarity reversion was explored for simultaneous anaerobic/aerobic treatment of azo dye and production of bioelectricity under extremely low buffer. The Congo red was first decolorized in anode, with completed color removal in 35 h. The resultant decolorization intermediates were then mineralized after the anode reversed to aerobic biocathode, evidenced by 55 % chemical oxygen demand (COD) removal in 200 h. The mineralization efficiency was further increased to 70 % when the period of the half-cycle was prolonged to 375 h. Meanwhile, the BES produced a continuous stable positive/negative alternate voltage output under 5 mM phosphate buffer because of the self-neutralization of the accumulated protons and hydroxyl ions in electrolyte. The electrode performance was significantly improved, which was indicated by alleviated electrode polarization, due to in situ use of accumulated protons and hydroxyl ions and enhanced electron transfer in the presence of Congo red and its degradation intermediates, which resulted in 1.05-fold increases in maximum power density (67.5 vs. 32.9 mW/m2). An analysis of the microbial diversity in the biofilm revealed that the biofilm was dominated by facultative bacteria with functional roles in contaminant degradation and electricity generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA (2005) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–10

    Article  CAS  PubMed  Google Scholar 

  • Cai P, Xiao X, He Y, Li W, Chu J, Wu C, He M, Zhang Z, Sheng G, Lam MH, Xu F, Yu H (2012) Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Appl Microbiol Biotechnol 93(4):1769–1776

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Hsueh C, Liu S, Ng I, Wang Y (2013) Deciphering mediating characteristics of decolorized intermediates for reductive decolorization and bioelectricity generation. Bioresour Technol 145:321–325

    Article  CAS  PubMed  Google Scholar 

  • Chen BY, Zhang MM, Chang CT, Ding Y, Lin KL, Chiou CS, Hsueh CC, Xu H (2010) Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri. Bioresour Technol 101:4737–4741

    Article  CAS  PubMed  Google Scholar 

  • Cheng KY, Ho G, Cord-Ruwisch RA (2010) Anodophilic biofilm catalyzes cathodic oxygen reduction. Environ Sci Technol 44(1):518–525

    Article  CAS  PubMed  Google Scholar 

  • El-Chakhtoura J, El-Fadel M, Ananda Rao H, Li D, Ghanimeh S, Saikaly PE (2014) Electricity generation and microbial community structure of air-cathode microbial fuel cells powered with the organic fraction of municipal solid waste and inoculated with different seeds. Biomass Bioenerg 67:24–31

    Article  CAS  Google Scholar 

  • Fernando E, Keshavarz T, Kyazze G (2013) Simultaneous co-metabolic decolourisation of azo dye mixtures and bio-electricity generation under thermophilic (50 °C) and saline conditions by an adapted anaerobic mixed culture in microbial fuel cells. Bioresour Technol 127:1–8

    Article  CAS  PubMed  Google Scholar 

  • Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    Article  CAS  PubMed  Google Scholar 

  • Grabowski A, Tindall BJ, Bardin V, Blanchet D, Jeanthon C (2005) Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int J Syst Evol Microbiol 55(3):1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Lorenzini E (2007) Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species. BMC Evol Biol 7(1):71

    Article  PubMed Central  PubMed  Google Scholar 

  • Harnisch F, Schroder U, Scholz F (2008) The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. Environ Sci Technol 42:1740–1746

    Article  CAS  PubMed  Google Scholar 

  • He Z, Mansfeld F (2009) Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ Sci 2:215–219

    Article  CAS  Google Scholar 

  • Iino T, Mori K, Uchino Y, Nakagawa T, Harayama S, Suzuki K (2010) Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. Int J Syst Evol Microbiol 60(6):1376–1382

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Yeom J, Kim J, Han J, Lim H, Park H, Hyun S, Park W (2011) Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Res Microbiol 162:1018–1026

    Article  CAS  PubMed  Google Scholar 

  • Kiely PD, Regan JM, Logan BE (2011) The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Curr Opin Biotechnol 22(3):378–385

    Article  CAS  PubMed  Google Scholar 

  • Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, Kong K, Waarde J, Krooneman J, Rossetti S, Thomsen TR, Nielsen PH (2007) Identity, abundance and ecophysiology of filamentous Chloroflexi species present inactivated sludge treatment plants. FEMS Microbiol Ecol 59(3):671–682

    Article  CAS  PubMed  Google Scholar 

  • Liang B, Cheng H, Van Nostrand JD, Ma J, Yu H, Kong D, Liu W, Ren N, Wu L, Wang A, Lee D, Zhou J (2014) Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover. Water Res 54(1):137–148

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Sheng G, Sun M, Zang G, Li W, Tong Z, Dong F, Lam MH, Yu H (2011) Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators. Appl Microbiol Biotechnol 89(1):201–208

    Article  CAS  PubMed  Google Scholar 

  • Logan B, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organism carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl Environ Microbiol 54(6):1472–1480

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84

    Article  CAS  Google Scholar 

  • Pankratov TA, Ivanova AO, Dedysh SN, Liesack W (2014) Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Appl Environ Microbiol 13(7):1800–1814

    Google Scholar 

  • Pant D, Bogaert GV, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543

    Article  CAS  PubMed  Google Scholar 

  • Pant D, Singh A, Van Bogaert G, Irving Olsen S, Singh Nigam P, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2(4):1248–1263

    Article  CAS  Google Scholar 

  • Qiu G, Song Y, Zeng P, Duan L, Xiao P (2013) Characterization of bacterial communities in hybrid upflow anaerobic sludge blanket (UASB)–membrane bioreactor (MBR) process for berberine antibiotic wastewater treatment. Bioresour Technol 142:52–62

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum MA, Frank AE (2014) Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Appl Microbiol Biotechnol 98(2):509–518

    Article  CAS  PubMed  Google Scholar 

  • Shinoda Y, Sakai Y, Uenishi H, Uchihashi Y, Hiraishi A, Yukawa H, Yurimoto H, Kato N (2004) Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl Environ Microbiol 70(3):1385–1392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solanki K, Subramanian S, Basu S (2013) Microbial fuel cells for azo dye treatment with electricity generation: a review. Bioresour Technol 131:564–571

    Article  CAS  PubMed  Google Scholar 

  • Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Solar energy powered microbial fuel cell with a reversible bioelectrode. Environ Sci Technol 44(1):532–537

    Article  CAS  PubMed  Google Scholar 

  • Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80(3):735–746

    Article  PubMed  Google Scholar 

  • Sui WJ, Asuming-Brempong S, Wang Q, Tourlousse DM, Penton CR, Deng Y, Rodrigues JLM, Adiku SGK, Jones JW, Zhou J, Cole JR, Tiedjea JM (2013) Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biol Biochem 65:33–38

    Article  Google Scholar 

  • Sun J, Bi Z, Hou B, Cao Y, Hu Y (2011) Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Water Res 45(1):283–291

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Li Y, Hu Y, Hou B, Zhang Y, Li S (2013) Understanding the degradation of Congo red and bacterial diversity in an air–cathode microbial fuel cell being evaluated for simultaneous azo dye removal from wastewater and bioelectricity generation. Appl Microbiol Biotechnol 97(8):3711–3719

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Z, Zheng Y, Xiao Y, Wu S, Wu Y, Yang Z, Zhao F (2013) Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells. Bioresour Technol 144:74–79

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Jiang C, Wang B, Ma Y, Liu Z, Liu S (2006) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl Environ Microbiol 72(3):1759–1765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57(10):2299–2306

  • Yang Q, Wang J, Wang H, Chen X, Ren S, Li X, Xu Y, Zhang H, Li X (2012) Evolution of the microbial community in a full-scale printing and dyeing wastewater treatment system. Bioresour Technol 117:155–163

    Article  CAS  PubMed  Google Scholar 

  • Zanaroli G, Balloi A, Negroni A, Borruso L, Daffonchio D, Fava FA (2012) Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions. J Hazard Mater 209–210:449–457

Download references

Acknowledgments

The authors thank the financial support provided by the National Natural Science Fund of China (No. 51108186) and Fundamental Research Funds for the Central Universities (No. 2014ZZ0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary

UV-visible spectra data for the decolorization liuquid in the bicathode reversed from previous anode, membrane transport of main cations in the BES during polarity reversion, and electrochemical impedance spectra and cyclic voltammograms of the bioelectrodes before and after polarity reversion are shown in Figure S1-4. (PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Zhang, Y., Liu, G. et al. Unveiling characteristics of a bioelectrochemical system with polarity reversion for simultaneous azo dye treatment and bioelectricity generation. Appl Microbiol Biotechnol 99, 7295–7305 (2015). https://doi.org/10.1007/s00253-015-6614-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6614-1

Keywords

Navigation