Skip to main content
Log in

The induction of cytochrome P-450 in the alkane-utilizing yeast Lodderomyces elongisporus: Alterations in the microsomal membrane fraction

  • Applied Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

The adaptation of Lodderomyces elongisporus cells to n-alkane utilization was found to be connected with several alterations in the enzyme pattern of the whole cell and the microsomal fraction in particular. A strong induction was found for the microsomal localized cytochrome P-450 alkane hydroxylase system and other enzymes which are directly involved in the terminal degradation pathway of n-alkanes (long-chain alcohol and aldehyde dehydrogenases, catalase).

The decrease of the pO2 in the medium enhances the concentration of the constituents of the alkane hydroxylase system as well as that of several other haemoproteins (catalase, cytochrome oxidase), while the long-chain alcohol and aldehyde dehydrogenase enzymes are probably unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertrand JC, Blasco F, Giordani R, Jouannenau F, Azoulay E (1981) Purification of endoplasmic reticulum fractions from Candida tropicalis grown on tetradecane. FEMS Microbiol Lett 11:131–135

    Google Scholar 

  • Björkhem J, Danielsson H (1975) 7α-hydroxylation of exogenous and endogenous cholesterol in rat liver microsomes. Eur J Biochem 53:63–70

    Google Scholar 

  • Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758

    CAS  Google Scholar 

  • DeDuve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60:604–617

    Google Scholar 

  • Delaissé J-M, Martin P, Verheyen-Bouvy M-F, Nyns E-J (1981) Subcellular distribution of enzymes in the yeast Saccharomycopsis lipolytica grown on n-hexadecane, with special reference to the ω-hydroxylase. Biochim Biophys Acta 676:77–90

    Google Scholar 

  • Depierre J, Dallner G (1976) Isolation, subfractionation, and characterization of the endoplasmic reticulum. In: Maddy AH (ed) Biochemical analysis of membranes. Chapmen Hall, London, pp 79–131

    Google Scholar 

  • Dolé VP (1956) A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J Clin Invest 35:150–156

    Google Scholar 

  • Duppel W, Lebeault JM, Coon MJ (1973) Properties of a yeast cytochrome P-450-containing enzyme system which catalyses the hydroxylation of fatty acids, alkanes, and drugs. Eur J Biochem 36:583–592

    Google Scholar 

  • Estabrook RW, Franklin MR, Cohen B, Shigamatzu A, Hildebrandt AG (1971) Influence of hepatic microsomal mixed function oxidation reactions on cellular metabolic control. Metabolism 20:187–199

    Google Scholar 

  • Estabrook RW, Werringloer J (1978) The measurement of difference spectra: application to the cytochromes of microsomes. Methods Enzymol 52:212–220

    Google Scholar 

  • Fuhrhop J-H, Smith KM (1975) Laboratory methods. In: Smith KM (ed) Porphyrins and metalloprophyrins. Elsevier, Amsterdam, pp 804–836

    Google Scholar 

  • Fukui S, Tanaka A (1979) Yeast peroxisomes. Trends Biochem Sci 4:246–249

    Google Scholar 

  • Gallo M, Bertrand JC, Azoulay E (1971) Participation du cytochrome P-450 dans l'oxydation des alcanes ches Candida tropicalis. FEBS Lett 19:45–49

    Google Scholar 

  • Gallo M, Bertrand JC, Roche B, Azoulay E (1973) Alkane oxidation in Candida tropicalis. Biochim Biophys Acta 296:624–638

    Google Scholar 

  • Gallo M, Roche-Penverne B, Azoulay E (1974) Localisation de l'alcool deshydrogenase mitochondriale de Candida tropicalis. FEBS Lett 46:78–82

    Google Scholar 

  • Gholson R, Baptist JK, Coon MJ (1963) Hydrocarbon oxidation by a bacterial enzyme system. II Cofactor requirements for octanol formation from octane. Biochemistry 2:1155–1159

    Google Scholar 

  • Gilewicz M, Zacek M, Bertrand J-C, Azoulay E (1979) Hydroxylase regulation in Candida tropicalis grown on alkanes. Can J Microbiol 25:201–206

    Google Scholar 

  • Gmünder FK, Käppeli O, Fiechter A (1981) Chemostat studies on the hexadecane assimilation by the yeast Candida tropicalis. II. Regulation of cytochromes and enzymes. Eur J Appl Microbiol Biotechnol 12:135–142

    Google Scholar 

  • Honeck H, Schunck W-H, Riege P, Müller H-G (1982) The cytochrome P-450 alkane monooxygenase system of the yeast Lodderomyces elongisporus: purification and some properties of the NADPH-cytochrome P-450 reductase. Biochem Biophys Res Commun 106:1318–1324

    Google Scholar 

  • Hörtner H, Ammerer G, Hartter E, Hamilton B, Rytka J, Bilinski T, Ruis H (1982) Regulation of synthesis of catalase and iso-1-cytochrome c in Saccharomyces cerevisiae by glucose, oxygen and heme. Eur J Biochem 128:179–184

    Google Scholar 

  • Kapralek F, Jechova E, Otavova M (1982) Two sites of oxygen control in induced synthesis of respiratory nitrate reductase in Escherichia coli. J Bacteriol 149:1142–1145

    Google Scholar 

  • Kawamoto s, Tanaka A, Yamamura M, Teranishi Y, Fukui S (1977) Microbody of n-alkane-grown yeast: enzyme localization in the isolated microbody. Arch Microbiol 112:1–8

    Google Scholar 

  • Klug MJ, Markovetz AJ (1971) Utilization of aliphatic hydrocarbons by microorganisms. Adv Microbiol Physiol 5:1–43

    Google Scholar 

  • Kovác L, Bednárová H, Greksák M (1968) Oxidative phosphorylation in yeast. I. Isolation and properties of phosphorylating mitochondria from stationary phase cells. Biochim Biophys Acta 153:32–42

    Google Scholar 

  • Krauzova VI, Sapozhnikova GP (1979) Alcohol dehydrogenase activity of Torulopsis cancida during growth on intermediate oxidation products of glucose and hexadecane. Mikrobiologija 48:434–438

    Google Scholar 

  • Lebeault JM, Lode ET, Coon MJ (1971) Fatty acid and hydrocarbon hydroxylation in yeast: Role of cytochrome P-450 in Candida tropicalis. Biochem Biophys Res Commun 42:413–419

    Google Scholar 

  • Lemberg R, Barrett J (1973) Cytochromes. In: Biosynthesis of cytochromes. Academic Press, London New York, pp 446–483

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Marchal R, Metche M, Vandecasteele J-P (1982) Hydroxylation of alkanes and fatty acids in Saccharomycopsis lipolytica. Evidence for the involvement of cytochrome P-450. J Gen Microbiol 128:1125–1134

    Google Scholar 

  • Mauersberger S, Matyashova RN (1980) The content of cytochrome P-450 in yeast cells growing on hexadecane. Mikrobiologija 49:571–577

    Google Scholar 

  • Mauersberger S, Matyashova RN, Müller H-G, Losinov AB (1980) Influence of the growth substrate and the oxygen concentration in the medium on the cytochrome P-450 content in Candida guilliermondii. Eur J Appl Microbiol Biotechnol 9:285–294

    Google Scholar 

  • Mauersberger S, Schunck W-H, Müller H-G (1981) The induction of cytochrome P-450 in Lodderomyces elongisporus. Z Allg Mikrobiol 21:313–321

    Google Scholar 

  • Omura T (1978) Hepatic microsomal systems. In: Sato R, Omura T (eds) Cytochrome P-450. Kodansha, Tokyo; Academic Press, New York, pp 138–163

    Google Scholar 

  • Polakis ES, Bartley W, Meek GA (1963) Changes in the structure and enzyme activity of Saccharomyces cerevisiae in response to changes in the environment. Biochem J 90:369–374

    Google Scholar 

  • Rehm HJ, Reiff J (1981) Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv Biochem Eng 19:175–215

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  Google Scholar 

  • Riege P, Schunck W-H, Honeck H, Müller H-G (1981) Cytochrome P-450 from Lodderomyces elongisporus: Its purification and some properties of the highly purified protein. Biochem Biophys Res Commun 98:527–534

    Google Scholar 

  • Rogers PJ, Stewart PR (1973) Respiratory development in Saccharomyces cerevisiae grown at controlled oxygen tension. J Bacteriol 155:88–97

    Google Scholar 

  • roggenkamp R, Sahm H, Wagner F (1974) Microbial assimilation of methanol. Induction and function of catalase in Candida boidinii. FEBS Lett 41:283–286

    Google Scholar 

  • Schunck W-H, Riege P, Blasig R, Honeck H, Müller H-G (1978) Cytochrome P-450 and alkane hydroxylase activity in Candida guilliermondii. Acta Biol Med Germ 37:K3-K7

    Google Scholar 

  • Tagawa K (1978) Induction and disappearance of cytochrome P-450 in yeast cells. In: Sato R, Omura T (eds) Cytochrome P-450. Kodansha, Tokyo; Academic Press, New York, pp 202–208

    Google Scholar 

  • Takagi M, Moriya K, Yano K (1980) Induction of cytochrome P-450 in petroleum-assimilating yeast. Cell Molec Biol 25:363–375

    Google Scholar 

  • Williams JN (1964) A method for the simultaneous quantitative estimation of cytochromes a, b, and c in mitochondria. Arch Biochem Biophys 107:537–543

    Google Scholar 

  • Woodrow G, Schatz G (1979) The role of oxygen in the biosynthesis of cytochrome c oxidase of yeast mitochondria. J Biol Chem 254:6088–6093

    Google Scholar 

  • Yamada T, Nawa H, kawamoto S, Tanaka A, Fukui S (1980) Subcellular localization of long-chain alcohol dehydrogenase and aldehyde dehydrogenase in n-alkane-grown Candida tropicalis. Arch Microbiol 128:145–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. W. Scheler on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauersberger, S., Schunck, WH. & Müller, HG. The induction of cytochrome P-450 in the alkane-utilizing yeast Lodderomyces elongisporus: Alterations in the microsomal membrane fraction. Appl Microbiol Biotechnol 19, 29–35 (1984). https://doi.org/10.1007/BF00252813

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00252813

Keywords

Navigation