Skip to main content
Log in

Proteomic and transcriptional analyses of Arthrobotrys oligospora cell wall related proteins reveal complexity of fungal virulence against nematodes

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The nematode-trapping fungus Arthrobotrys oligospora is the best-studied fungus for understanding the interaction between fungi and nematodes. The fungus uses three-dimensional adhesive networks to capture nematodes and then penetrates into the worms through their cuticle. Here we examine the effects of fungal cell wall related proteins on morphogenesis and virulence of the fungi. We focused on the changes in its proteomic and transcriptional profiles during its transition from saprophytic to predatory phase. Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics using the liquid chromatography/mass spectrometry (LC/MS) method revealed an extended set of virulence related proteins, such as adhesins and serine proteases, on the cell wall of A. oligospora. Transcription analyses of their coding genes revealed an important set of candidate virulence factors. Our analyses also show that glycosyl hydrolases likely play important roles in trap formation of A. oligospora. The adhesins on the three-dimensional adhesive networks may have two functions: to enable the mycelia to stick to nematodes and to serve as important constituents of the extracellular matrix that harbors many secreted virulence related proteins. This study is the first to systematically identify cell wall related proteins that are important in the trap formation and infection of the fungus against nematode hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150(7):2029–2035

    Article  PubMed  CAS  Google Scholar 

  • Ahman J, Ek B, Rask L, Tunlid A (1996) Sequence analysis and regulation of a gene encoding a cuticle-degrading serine protease from the nematophagous fungus Arthrobotrys oligospora. Microbiology 142(7):1605

    Article  PubMed  Google Scholar 

  • Åhman J, Johansson T, Olsson M, Punt PJ, van den Hondel CA, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68(7):3408–3415

    Article  PubMed  Google Scholar 

  • Andersson KM, Meerupati T, Levander F, Friman E, Ahren D, Tunlid A (2013) Proteome of the nematode-trapping cells of the fungus Monacrosporium haptotylum. Appl Environ Microbiol 79(16):4993–5004

    Article  PubMed  CAS  Google Scholar 

  • Balogh J, Tunlid A, Rosén S (2003) Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol 39(2):128–135

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4):783–795

    Article  PubMed  Google Scholar 

  • Brunke S, Hube B (2006) MfLIP1, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur. Microbiology 152(2):547–554

    Article  PubMed  CAS  Google Scholar 

  • Coronado JE, Mneimneh S, Epstein SL, Qiu WG, Lipke PN (2007) Conserved processes and lineage-specific proteins in fungal cell wall evolution. Eukaryot Cell 6(12):2269–2277

    Article  PubMed  CAS  Google Scholar 

  • Cox GM, McDade HC, Chen SCA, Tucker SC, Gottfredsson M, Wright LC, Sorrell TC, Leidich SD, Casadevall A, Ghannoum MA, Perfect JR (2001) Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol Microbiol 39(1):166–175

    Article  PubMed  CAS  Google Scholar 

  • Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337(2):243–253

    Article  PubMed  CAS  Google Scholar 

  • Frigeri LG, Liu FT (1992) Surface expression of functional IgE binding protein, an endogenous lectin, on mast cells and macrophages. J Immunol 148(3):861–867

    PubMed  CAS  Google Scholar 

  • Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13(1):122–143

    Article  PubMed  CAS  Google Scholar 

  • Gruber S, Seidl-Seiboth V (2012) Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology 158(Pt 1):26–34

    Article  PubMed  CAS  Google Scholar 

  • Heintz C, Pramer D (1972) Ultrastructure of nematode-trapping fungi. J Bacteriol 110(3):1163–1170

    PubMed  CAS  Google Scholar 

  • Jansson HB, Nordbring-Hertz B (1981) Trap and conidiophore formation in Arthrobotrys superba. Trans Br Mycol Soc 77(1):205–207

    Article  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  PubMed  CAS  Google Scholar 

  • Lan P, Li W, Wen T-N, Shiau J-Y, Wu Y-C, Lin W, Schmidt W (2011) iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis. Plant physiol 155(2):821–834

    Article  PubMed  CAS  Google Scholar 

  • Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66(2):279–290

    Article  PubMed  Google Scholar 

  • Liang L, Liu S, Yang J, Meng Z, Lei L, Zhang K (2011) Comparison of homology models and crystal structures of cuticle-degrading proteases from nematophagous fungi: structural basis of nematicidal activity. FASEB J 25(6):1894–1902

    Article  PubMed  CAS  Google Scholar 

  • Liang L, Meng Z, Ye F, Yang J, Liu S, Sun Y, Guo Y, Mi Q, Huang X, Zou C, Rao Z, Lou Z, Zhang KQ (2010) The crystal structures of two cuticle-degrading proteases from nematophagous fungi and their contribution to infection against nematodes. FASEB J 24(5):1391–1400

    Article  PubMed  CAS  Google Scholar 

  • Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2006) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29(5):877–896

    Article  Google Scholar 

  • Niu XM, Zhang KQ (2011) Arthrobotrys oligospora: a model organism for understanding the interaction between fungi and nematodes. Mycology 2(2):59–78

    Article  CAS  Google Scholar 

  • Nordbring-Hertz B (1972) Scanning electron microscopy of the nematode-trapping organs in Arthrobotrys oligospora. Physiol Plantarum 26(2):279–284

    Google Scholar 

  • Nordbring-Hertz B (1977) X-ray microanalysis of the nematode-trapping organs in Arthrobotrys oligospora. Trans Br Mycol Soc 68(1):53–57

    Article  Google Scholar 

  • Nordbring-Hertz B (2004) Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora — an extensive plasticity of infection structures. Mycologist 18(3):125–133

    Article  Google Scholar 

  • Nordbring-Hertz B, Mattiasson B (1979) Action of a nematode-trapping fungus shows lectin-mediated host–microorganism interaction. Nature 281(5731):477–479

    Article  CAS  Google Scholar 

  • Nordbring-Hertz B, Stålhammar-Carlemalm M (1978) Capture of nematodes by Arthrobotrys oligospora, an electron microscope study. Can J Bot 56(10):1297–1307

    Article  Google Scholar 

  • Nordbring-Hertz B, Jansson H-B, Tunlid A (2011) Nematophagous fungi. eLS. John Wiley & Sons, Chichester, UK

    Google Scholar 

  • Paper JM, Scott-Craig JS, Adhikari ND, Cuomo CA, Walton JD (2007) Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics 7(17):3171–3183

    Article  PubMed  CAS  Google Scholar 

  • Pardo M, Ward M, Bains S, Molina M, Blackstock W, Gil C, Nombela C (2000) A proteomic approach for the study of Saccharomyces cerevisiae cell wall biogenesis. Electrophoresis 21(16):3396–3410

    Article  PubMed  CAS  Google Scholar 

  • Pitarch A, Nombela C, Gil C (2008) Cell wall fractionation for yeast and fungal proteomics. Methods Mol Biol 425:217–239

    Article  PubMed  CAS  Google Scholar 

  • Pitarch A, Sanchez M, Nombela C, Gil C (2002) Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics 1(12):967–982

    Article  PubMed  CAS  Google Scholar 

  • Prados-Rosales R, Luque-Garcia JL, Martínez-López R, Gil C, Di Pietro A (2009) The Fusarium oxysporum cell wall proteome under adhesion-inducing conditions. Proteomics 9(20):4755–4769

    Article  PubMed  CAS  Google Scholar 

  • Santangelo R, Zoellner H, Sorrell T, Wilson C, Donald C, Djordjevic J, Shounan Y, Wright L (2004) Role of extracellular phospholipases and mononuclear phagocytes in dissemination of cryptococcosis in a murine model. Infect Immun 72(4):2229–2239

    Article  PubMed  CAS  Google Scholar 

  • Santi L, Beys da Silva WO, Berger M, Guimarães JA, Schrank A, Vainstein MH (2010) Conidial surface proteins of Metarhizium anisopliae: source of activities related with toxic effects, host penetration and pathogenesis. Toxicon 55(4):874–880

    Article  PubMed  CAS  Google Scholar 

  • Scholler M, Rubner A (1999) Arthrobotrys hertziana sp. nov. from the Canary Islands. Mycol Res 103(6):764–768

    Article  Google Scholar 

  • Su L, Zhou R, Liu C, Wen B, Xiao K, Kong W, Tan F, Huang Y, Cao L, Xie L (2013) Urinary proteomics analysis for sepsis biomarkers with iTRAQ labeling and two-dimensional liquid chromatography-tandem mass spectrometry. J Trauma Acute Care Surg 74(3):940–945

    Article  PubMed  CAS  Google Scholar 

  • Tunlid A, Johansson T, Nordbring-Hertz B (1991) Surface polymers of the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 137(6):1231

    CAS  Google Scholar 

  • Wang C, St Leger RJ (2007) The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 6(5):808–816

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Tian B, Liang L, Zhang K (2007a) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75(1):21–31

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Huang X, Tian B, Wang M, Niu Q, Zhang K (2005) Isolation and characterization of a serine protease from the nematophagous fungus, Lecanicillium psalliotae, displaying nematicidal activity. Biotechnol Lett 27(15):1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Wang L, Ji X, Feng Y, Li X, Zou C, Xu J, Ren Y, Mi Q, Wu J, Liu S, Liu Y, Huang X, Wang H, Niu X, Li J, Liang L, Luo Y, Ji K, Zhou W, Yu Z, Li G, Liu Y, Li L, Qiao M, Feng L, Zhang KQ (2011) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7(9):e1002179

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yang E, An Z, Liu X (2007b) Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc Natl Acad Sci U S A 104(20):8379–8384

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Xia YX, Kim B, Keyhani NO (2011) Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol Microbiol 80(3):811–826

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Jianping Xu of Dept. Biology, McMaster University, and Prof. Chang Sun in our laboratory for valuable comments and critical discussion. The research described here is supported by the National Basic Research Program of China (Program 973, grant no. 2013CB127500) and the National Natural Science Foundation Program of China (grant no. 31201565, 31272093), Research Fund for the Docoral Program of Higher Education of China (grant no. 20115301120007), the Department of Science and Technology of Yunnan Province, China (grant no.2011FB002), Yunnan University (grant no. 2010ZD002), China National Tobacco Corporation (grant no. 110201002023) and Yunnan Branch of China Tobacco Industrial Corporation (grant no. 2010YN17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqin Zhang.

Additional information

L. Liang and H. Wu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 313 kb)

About this article

Cite this article

Liang, L., Wu, H., Liu, Z. et al. Proteomic and transcriptional analyses of Arthrobotrys oligospora cell wall related proteins reveal complexity of fungal virulence against nematodes. Appl Microbiol Biotechnol 97, 8683–8692 (2013). https://doi.org/10.1007/s00253-013-5178-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5178-1

Keywords

Navigation