Skip to main content

Advertisement

Log in

Proteome analysis of virus–host cell interaction: rabies virus replication in Vero cells in two different media

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The use of Vero cells for rabies vaccine production was recommended from the WHO in 2005. A controlled production process is necessary to reduce the risk of contaminants in the product. One step towards this is to turn away from animal-derived components (e.g. serum, trypsin, bovine serum albumin) and face a production process in animal component-free medium. In this study, a proteomic approach was applied, using 2-D differential gel electrophoresis and mass spectrometry to compare rabies virus propagation in Vero cells under different cultivation conditions in microcarrier culture. Protein alterations were investigated for uninfected and infected Vero cells over a time span from 1 to 8 days post-infection in two different types of media (serum-free versus serum-containing media). For mock-infected cells, proteins involved in stress response, redox status, protease activity or glycolysis, and protein components in the endoplasmic reticulum were found to be differentially expressed comparing both cultivation media at all sampling points. For virus-infected cells, additionally changes in protein expression involved in general cell regulation and in calcium homeostasis were identified under both cultivation conditions. The fact that neither of these additional proteins was identified for cells during mock infection, but similar protein expression changes were found for both systems during virus propagation, indicates for a specific response of the Vero cell proteome on rabies virus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acton SL, Brodsky FM (1990) Predominance of clathrin light chain Lcb correlates with the presence of a regulated secretory pathway. J Cell Biol 111(4):1419–1426

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Burgoyne RD, Geisow MJ (1989) The annexin family of calcium-binding proteins. Cell Calcium 10(1):1–10

    Article  CAS  Google Scholar 

  • Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68(3):283–291

    Article  CAS  Google Scholar 

  • Critchley DR (2000) Focal adhesions—the cytoskeletal connection. Curr Opin Cell Biol 12(1):133–139

    Article  CAS  Google Scholar 

  • dela Luz-Hernández KR, Rojas-del CL, Rabasa-Legón Y, Lage-Castellanos A, Castillo-Vitlloch A, Díaz J, Gaskell S (2008a) Metabolic and proteomic study of NS0 myeloma cell line following the adaptation to protein-free medium. J Proteomics 71(2):133–147

    Article  Google Scholar 

  • dela Luz-Hernández KR, Rojas-del CL, Victores-Sarasola S, Lage-Castellanos A, Eyers C, Hart S, Castellanos-Serra L, Castillo-Vitlloch A, Gaskell S (2008b) Proteomic analysis of the adaptation of the host NS0 myeloma cell line to a protein-free medium. Biotecnol Apl 24:215–223

    Google Scholar 

  • Dhingra V, Li X, Liu Y, Fu ZF (2007) Proteomic profiling reveals that rabies virus infection results in differential expression of host proteins involved in ion homeostasis and synaptic physiology in the central nervous system. J Neurovirol 13(2):107–117

    Article  CAS  Google Scholar 

  • Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nature Rev Mol Cell Biol 11(4):276–287

    Article  CAS  Google Scholar 

  • Frazatti-Gallina NM, Mourão-Fuches RM, Paoli RL, Silva ML, Miyaki C, Valentini EJ, Raw I, Higashi HG (2004) Vero-cell rabies vaccine produced using serum-free medium. Vaccine 23(4):511–517

    Article  CAS  Google Scholar 

  • Genzel Y, Ritter JB, König S, Alt R, Reichl U (2005) Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol Prog 21(1):58–69

    Article  CAS  Google Scholar 

  • Genzel Y, Reichl U (2009) Continuous cell lines as a production system for influenza vaccines. Expert Rev Vaccines 8(12):1681–1692

    Google Scholar 

  • Genzel Y, Dietzsch C, Rapp E, Schwarzer J, Reichl U (2010) MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. Appl Microbiol Biotechnol 88(2):461–475

    Google Scholar 

  • Gerke V, Moss SE (1997) Annexins and membrane dynamics. Biochim Biophys Acta 1357(2):129–154

    Article  CAS  Google Scholar 

  • Görg A, Obermaier C, Boguth G, Csordas A, Diaz JJ, Madjar JJ (1997) Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis 18(3–4):328–337

    Article  Google Scholar 

  • Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21(6):1037–1053

    Article  Google Scholar 

  • Hubbard MJ, McHugh NJ, Carne DL (2000) Isolation of ERp29, a novel endoplasmic reticulum protein, from rat enamel cells—evidence for a unique role in secretory-protein synthesis. Eur J Biochem 267(7):1945–1956

    Article  CAS  Google Scholar 

  • Ivanov I, Yabukarski F, Ruigrok RWH, Jamin M (2011) Structural insights into the rhabdovirus transcription/replication complex. Virus Res 162:126–137

    Article  CAS  Google Scholar 

  • Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313(10):2050–2062

    Article  CAS  Google Scholar 

  • Janke R, Genzel Y, Wetzel M, Reichl U (2011) Effect of influenza virus infection on key metabolic enzyme activities in MDCK cells. BMC Proc 5(8):129

    Article  Google Scholar 

  • Jayme DW, Smith SR (2000) Media formulation options and manufacturing process controls to safeguard against introduction of animal origin contaminants in animal cell culture. Cytotechnol 33(1–3):27–36

    Article  CAS  Google Scholar 

  • Kim JY, Kim YG, Han YK, Choi HS, Kim YH, Lee GM (2011) Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrolysates. Appl Microbiol Biotechnol 89(6):1917–1928

    Article  CAS  Google Scholar 

  • Knull HR, Walsh JL (1992) Association of glycolytic-enzymes with the cytoskeleton. Curr Top Cell Regul 33:15–30

    CAS  Google Scholar 

  • Krampe B, Swiderek H, Al-Rubeai M (2008) Transcriptome and proteome analysis of antibody-producing mouse myeloma NS0 cells cultivated at different cell densities in perfusion culture. Biotechnol Appl Biochem 50:133–141

    Article  CAS  Google Scholar 

  • Kuystermans D, Krampe B, Swiderek H, Al-Rubeai M (2007) Using cell engineering and omic tools for the improvement of cell culture processes. Cytotechnol 53(1–3):3–22

    Article  Google Scholar 

  • Lee KH, Sburlati A, Renner WA, Bailey JE (1996) Deregulated expression of cloned transcription factor E2F-1 in Chinese hamster ovary cells shifts protein patterns and activates growth in protein-free medium. Biotechnol Bioeng 50(3):273–279

    Article  CAS  Google Scholar 

  • Lohr V, Rath A, Genzel Y, Jordan I, Sandig V, Reichl U (2009) New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation. Vaccine 27(36):4975–4982

    Google Scholar 

  • Merten OW, Kallel H, Manuguerra JC, Tardy-Panit M, Crainic R, Delpeyroux F, Van der Werf S, Perrin P (1999) The new medium MDSS2N, free of any animal protein supports cell growth and production of various viruses. Cytotechnol 30(1–3):191–201

    Article  CAS  Google Scholar 

  • Merten OW, Kierulff JV, Castignolles N, Perrin P (1994) Evaluation of the new serum-free medium (MDSS2) for the production of different biologicals: use of various cell lines. Cytotechnol 14(1):47–59

    Article  CAS  Google Scholar 

  • Mitozo PA, de Souza LF, Loch-Neckel G, Flesch S, Maris AF, Figueiredo CP, dos Santos ARS, Farina M, Dafre AL (2011) A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism. Free Radical Biol Med 51(1):69–77

    Article  CAS  Google Scholar 

  • Neermann J, Wagner R (1996) Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J Cell Physiol 166(1):152–169

    Google Scholar 

  • Ovadi J, Saks V (2004) On the origin of intracellular compartmentation and organized metabolic systems. Mol Cell Biochem 256(1–2):5–12

    Article  Google Scholar 

  • Ozawa M, Muramatsu T (1993) Reticulocalbin, a novel endoplasmic-reticulum resident Ca2+-binding protein with multiple EF-hand motifs and a carboxyl-terminal HDEL sequence. J Biol Chem 268(1):699–705

    CAS  Google Scholar 

  • Passini CA, Goochee CF (1989) Response of a mouse hybridoma cell-Line to heat-shock, agitation, and sparging. Biotechnol Prog 5(4):175–188

    Article  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  CAS  Google Scholar 

  • Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5(3):177–187

    Article  CAS  Google Scholar 

  • Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U (2010) Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling. BMC Syst Biol 4:61

    Article  Google Scholar 

  • Rödig JV, Rapp E, Hoper D, Genzel Y, Reichl U (2011) Impact of host cell line adaptation on quasispecies composition and glycosylation of influenza A virus hemagglutinin. PLoS One 6(12):e27989

    Article  Google Scholar 

  • Rödig JV, Rapp E, Bohne J, Kampe M, Kaffka H, Bock A, Genzel Y, Reichl U (2013) Impact of cultivation conditions on N-glycosylation of influenza virus a hemagglutinin produced in MDCK cell culture. Biotechnol Bioeng. doi:10.1002/bit.24834

    Google Scholar 

  • Rourou S, van der Ark A, Majoul S, Trabelsi K, van der Velden T, Kallel H (2009a) A novel animal-component-free medium for rabies virus production in Vero cells grown on Cytodex 1 microcarriers in a stirred bioreactor. Appl Microbiol Biotechnol 85(1):53–63

    Article  CAS  Google Scholar 

  • Rourou S, van der Ark A, van der Velden T, Kallel H (2007) A microcarrier cell culture process for propagating rabies virus in Vero cells grown in a stirred bioreactor under fully animal component free conditions. Vaccine 25(19):3879–3889

    Article  CAS  Google Scholar 

  • Rourou S, van der Ark A, van der Velden T, Kallel H (2009b) Development of an animal-component free medium for Vero cells culture. Biotechnol Prog 25(6):1752–1761

    CAS  Google Scholar 

  • Schäfer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21(4):134–140

    Google Scholar 

  • Seow TK, Korke R, Liang RC, Ong SE, Ou K, Wong K, Hu WS, Chung MC (2001) Proteomic investigation of metabolic shift in mammalian cell culture. Biotechnol Prog 17(6):1137–1144

    Article  CAS  Google Scholar 

  • Smith JS, Yager PA, Baer GM (1973) A rapid tissue culture test for determining rabies neutralizing antibody. Monogr Ser World Health Organ 23:354–357

    Google Scholar 

  • Tew KD, Manevich Y, Grek C, Xiong Y, Uys J, Townsend DM (2011) The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radical Biol Med 51(2):299–313

    Article  CAS  Google Scholar 

  • Trabelsi K, Rourou S, Loukil H, Majoul S, Kallel H (2006) Optimization of virus yield as a strategy to improve rabies vaccine production by Vero cells in a bioreactor. J Biotechnol 121(2):261–271

    Article  CAS  Google Scholar 

  • van Zon A, Mossink MH, Houtsmuller AB, Schoester M, Scheffer GL, Scheper RJ, Sonneveld P, Wiemer EAC (2006) Vault mobility depends in part on microtubules and vaults can be recruited to the nuclear envelope. Exp Cell Res 312(3):245–255

    Google Scholar 

  • Vester D, Rapp E, Gade D, Genzel Y, Reichl U (2009) Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines. Proteomics 9(12):3316–3327

    Article  CAS  Google Scholar 

  • Vester D, Rapp E, Kluge S, Genzel Y, Reichl U (2010) Virus-host cell interactions in vaccine production cell lines infected with different human influenza A virus variants: a proteomic approach. J Proteomics 73(9):1656–1669

    Article  CAS  Google Scholar 

  • Wang X, Zhang S, Sun C, Yuan ZG, Wu X, Wang D, Ding Z, Hu R (2011) Proteomic profiles of mouse neuro N2a cells infected with variant virulence of rabies viruses. J Microbiol Biotechnol 21(4):366–373

    CAS  Google Scholar 

  • WHO (2005) Expert consultation on rabies. World Health Organ Tech Rep Ser 931:1–88

    Google Scholar 

  • Xing HM, Zhang SS, Weinheimer C, Kovacs A, Muslin AJ (2000) 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. EMBO J 19(3):349–358

    Article  CAS  Google Scholar 

  • Zandi F, Eslami N, Soheili M, Fayaz A, Gholami A, Vaziri B (2009) Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus. Proteomics 9(9):2399–2407

    Article  CAS  Google Scholar 

  • Zhao J, Meyerkord CL, Du YH, Khuri FR, Fu HA (2011) 14-3-3 proteins as potential therapeutic targets. Sem Cell Dev Biol 22(7):705–712

    Article  Google Scholar 

  • Zhou YB, Frey TK, Yang JJ (2009) Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 46(1):1–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Barbara Koehler for supporting the in-gel digestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdmann Rapp.

Additional information

Sabine Kluge and Samia Rourou contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3.43 mB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kluge, S., Rourou, S., Vester, D. et al. Proteome analysis of virus–host cell interaction: rabies virus replication in Vero cells in two different media. Appl Microbiol Biotechnol 97, 5493–5506 (2013). https://doi.org/10.1007/s00253-013-4939-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4939-1

Keywords

Navigation