Skip to main content

Advertisement

Log in

Heterologous hyper-expression of a glucansucrase-type glycosyltransferase gene

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Heterologous expression of the large glucansucrase-type glycosyltransferases genes is still a challenge, and typically yields are poor. Therefore, a number of different Escherichia coli systems for the expression of such a gene, encoding the glycosyltransferase R (GtfR) from Streptococcus oralis, were constructed and evaluated. We thereby obtained a strain producing the highest molar yields described so far for this class of enzymes. Cloning of a 5′-terminally truncated version of the gene in the expression vector pET33b(+) yielded, in dissolved form, about 2 μmol (300 mg) of enzyme per liter of culture of an optical density at 600 nm of four. Problems frequently encountered in the heterologous biosynthesis of this class of enzymes, such as formation of a high fraction of insoluble aggregates and/or proteolytic degradation, were not observed in the described system. The over-produced enzyme, devoid of almost its entire variable region, retained its characteristic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balakrishnan M, Simmonds RS, Tagg JR (2000) Dental caries is a preventable infectious disease. Aust Dent J 45:235–245

    Article  CAS  Google Scholar 

  • Bozonnet S, Dols-Laffargue M, Fabre E, Pizzut S, Remaud-Simeon M, Monsan P, Willemot R-M (2002) Molecular characterization of DSR-E, an a-1,2 linkage-synthesizing dextransucrase with two catalytic domains. J Bacteriol 184:5753–5761

    Article  CAS  Google Scholar 

  • de Smit MH, van Duin J (1994) Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J Mol Biol 244:144–150

    Article  Google Scholar 

  • Demuth K, Jördening HJ, Buchholz K (2002) Oligosaccharide synthesis by dextransucrase: new unconventional acceptors. Carbohydr Res 337:1811–1820

    Article  CAS  Google Scholar 

  • Dols M, Simeon MR, Willemot RM, Vignon MR, Monsan PF (1997) Structural characterization of the maltose acceptor-products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Carbohydr Res 305:549–559

    Article  CAS  Google Scholar 

  • Fu DT, Robyt JF (1991) Maltodextrin acceptor reactions of Streptococcus mutans 6715 glucosyltransferases. Carbohydr Res 217:201–211

    Article  CAS  Google Scholar 

  • Fu DT, Slodki ME, Robyt JF (1990) Specificity of acceptor binding to Leuconostoc mesenteroides B-512F dextransucrase: binding and acceptor-product structure of alpha-methyl d-glucopyranoside analogs modified at C-2, C-3, and C-4 by inversion of the hydroxyl and by replacement of the hydroxyl with hydrogen. Arch Biochem Biophys 276:460–465

    Article  CAS  Google Scholar 

  • Fujiwara T, Hoshino T, Ooshima T, Sobue S, Hamada S (2000) Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infect Immun 68:2475–2483

    Article  CAS  Google Scholar 

  • Funane K, Mizuno K, Takahara H, Kobayashi M (2000) Gene encoding a dextransucrase-like protein in Leuconostoc mesenteroides NRRl B-512*. Biosci Biotechnol Biochem 64:29–38

    Article  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem J 280:309–316

    Article  CAS  Google Scholar 

  • Henrissat B, Davies GJ (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Op Struct Biol 7:637–644

    Article  CAS  Google Scholar 

  • Jensen MH, Mirza O, Albenne C, Remaud-Simeon M, Monsan P, Gajhede M, Skov LK (2004) Crystal structure of the covalent intermediate of amylosucrase from Neisseria polysaccharea. Biochemistry 43:3104–3110

    Article  CAS  Google Scholar 

  • Joucla G, Pizzut S, Monsan P, Remaud-Simeon M (2006) Construction of a fully active truncated alternansucrase partially deleted of its carboxy-terminal domain. FEBS Lett 580:763–768

    Article  CAS  Google Scholar 

  • Kemper C, Berggren K, Diwu Z, Patton WF (2001) An improved, luminescent europium based stain for detection of electroblotted proteins on nitrocellulose or polyvinylidene difluoride membranes. Electrophoresis 22:881–889

    Article  CAS  Google Scholar 

  • Kim D, Robyt JF, Lee SY, Lee JH, Kim YM (2003) Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr Res 338:1183–1189

    Article  CAS  Google Scholar 

  • Koga T, Sato S, Inoue M, Takeuchi K, Furuta T, Hamada S (1983) Role of primers in glucan synthesis by glucosyltransferases from Streptococcus mutans strain OMZ176. J Gen Microbiol 129:751–754

    CAS  PubMed  Google Scholar 

  • Konishi N, Torii Y, Yamamoto T, Miyagi A, Ohta H, Fukui K, Hanamoto S, Matsuno H, Komatsu H, Kodama T, Katayama E (1999) Structure and enzymatic properties of genetically truncated forms of the water-insoluble glucan-synthesizing glucosyltransferase from Streptococcus sobrinus. J Biochem 126:287–295

    Google Scholar 

  • Kralj S, van Geel-Schutten GH, van der Maarel MJ, Dijkhuizen L (2004) Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase. Microbiology 150:2099–2112

    Article  CAS  Google Scholar 

  • Ma CK, Kolesnikow T, Rayner JC, Simons EL, Yim H, Simons RW (1994) Control of translation by mRNA secondary structure: the importance of the kinetics of structure formation. Mol Microbiol 14:1033–1047

    Article  CAS  Google Scholar 

  • Mayer RM (1987) Dextransucrase: a glucosyltransferase from Streptococcus sanguis. Methods Enzymol 138:649–661

    Article  CAS  Google Scholar 

  • Meulenbeld GH, Hartmans S (2000) Transglycosylation by Streptococcus mutans GS-5 glucosyltransferase-D: acceptor specificity and engineering of reaction conditions. Biotechnol Bioeng 70:363–369

    Article  CAS  Google Scholar 

  • Monchois V, Remaud-Simeon M, Russell RR, Monsan P, Willemot RM (1997) Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Appl Microbiol Biotechnol 48:465–472

    Article  CAS  Google Scholar 

  • Monchois V, Vignon M, Russell RR (1999a) Isolation of key amino acid residues at the N terminal end of the core region Streptococcus downei glucansucrase GTF-I. Appl Microbiol Biotechnol 52:660–665

    Article  CAS  Google Scholar 

  • Monchois V, Willemot RM, Monsan P (1999b) Glucansucrases: mechanism of action and structure–function relationships. FEMS Microbiol Rev 23:131–151

    Article  CAS  Google Scholar 

  • Mooser G, Hefta SA, Paxton RJ, Shively JE, Lee TD (1991) Isolation and sequence of an active-site peptide containing a catalytic aspartic acid from two Streptococcus sobrinus alpha glucosyltransferases. J Biol Chem 266:8916–8922

    CAS  PubMed  Google Scholar 

  • Moulis C, Arcache A, Escalier PC, Rinaudo M, Monsan P, Remaud-Simeon M, Potocki-Veronese G (2006) High-level production and purification of a fully active recombinant dextransucrase from Leuconostoc mesenteroides NRRL B-512F. FEMS Microbiol Lett 261:203–210

    Article  CAS  Google Scholar 

  • Park MR, Ryu HJ, Kim D, Choe JY, Robyt JF (2001) Characterization of Leuconostoc mesenteroides B-742CB dextransucrase expressed in Escherichia coli. J Microbiol Biotechnol 11:628–635

    CAS  Google Scholar 

  • Robyt JF, Eklund SH (1983) Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr Res 121:279–286

    Article  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Seibel J, Hellmuth H, Hofer B, Kicinska A-M, Schmalbruch B (2006) Identification of new acceptor specificities of glycosyltransferase R with the aid of substrate microarrays. ChemBioChem 7:310–320

    Article  CAS  Google Scholar 

  • Studier FW (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44

    Article  CAS  Google Scholar 

  • Swistowska AM, Gronert S, Wittrock S, Collisi W, Hecht H-J, Hofer B (2007) Identification of structural determinants for substrate binding and turnover by glucosyltransferase R supports the permutation hypothesis. FEBS Lett 581:4036–4042

    Article  CAS  Google Scholar 

  • van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG (2006) Structure–function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70:157–176

    Article  Google Scholar 

  • Yoon SH, Fulton DB, Robyt JF (2004) Enzymatic synthesis of two salicin analogues by reaction of salicyl alcohol with Bacillus macerans cyclomaltodextrin glucanyltransferase and Leuconostoc mesenteroides B-742CB dextransucrase. Carbohydr Res 339:1517–1529

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. K. Buchholz, Technical University of Braunschweig, for introducing us to this family of enzymes and for helpful discussions. Special thanks go to Dr. T. Fujiwara for his kind gift of plasmid pTH275. Financial support of this project by the Deutsche Forschungsgemeinschaft through SFB 578 (“From gene to product”), project A2, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swistowska, A.M., Wittrock, S., Collisi, W. et al. Heterologous hyper-expression of a glucansucrase-type glycosyltransferase gene. Appl Microbiol Biotechnol 79, 255–261 (2008). https://doi.org/10.1007/s00253-008-1435-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1435-0

Keywords

Navigation