Skip to main content
Log in

Stochastic control with rough paths

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We study a class of controlled differential equations driven by rough paths (or rough path realizations of Brownian motion) in the sense of Lyons. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We make the link to old work of Davis and Burstein (Stoch Stoch Rep 40:203–256, 1992) and then prove a continuous-time generalization of Roger’s duality formula [SIAM J Control Optim 46:1116–1132, 2007]. The generic case of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations also relates to work of Mazliak and Nourdin (Stoch Dyn 08:23, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. ... although, strictly speaking, the multi-dimensional case is due to Clark and Stroock–Varadhan.

  2. See e.g. [14, 15] for consistency of rough integration again \(\mathbf {B} \left( \omega \right) \) with Stratonovich integration.

  3. For \(p < 2\) these are just continuous E-valued paths with finite p-variation. For \(p \in [2,3)\) additional “area” information is necessary. We refer to [25] and [15] for background on rough path theory.

  4. An extension to a time-dependent b is straightforward, as an inspection of the proof of Theorem 29 shows. A time-dependent \(\sigma \) can be treated immediately by adding a time-component to the rough path, although this leads to strong regularity assumption in t. For a more nuanced approach one could adopt the ideas from [15, Chapter12].

    It is also possible to consider the controlled hybrid RDE/SDE \( dX = b(X,\mu ) dt + \tilde{\sigma }(X, \mu ) dW + \sigma (X) d{\mathbf {\eta }}\), see [9].

  5. That is, the optimal control is given as a deterministic function \(u^*\) of time and the current state of the system. This is also called a Markovian control.

  6. The paper of Davis–Burstein predates rough path theory relies heavily on anticipating stochastic calculus.

  7. This equation admits an obvious pathwise SDE solution (via the ODE satisfied by \(X-B\)) so that, strictly speaking, there is no need for rough paths here.

  8. See [23] p. 18 for more on the choice of tensor norms which, of course, only matter in an infinite dimensional setting.

  9. See e.g. Definition 5.1 in [23].

References

  1. Bardi, M., Capuzzo, I.: Dolcetta: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston (1997)

    Book  MATH  Google Scholar 

  2. Barles, G., Jakobsen, E.R.: On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. Math. Model. Numer. Anal. 36(1), 33–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brown, D.B., Smith, J.E., Sun, P.: Information relaxations and duality in stochastic dynamic programs. Oper. Res. 58(4–Part–1), 785–801 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buckdahn, R., Ma, J.: Pathwise stochastic control problems and stochastic HJB equations. SIAM J. Control Optim. 45(6), 2224–2256 (2007)

  5. Crisan, D., Diehl, J., Friz, P., Oberhauser, H.: Robust filtering: correlated noise and multidimensional observation. Ann. Appl. Prob. 23(5), 2139–2160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caruana, M., Friz, P., Oberhauser, H.: A (rough) pathwise approach to a class of nonlinear SPDEs Annales de l’Institut Henri Poincaré / Analyse non linéaire. 28, 27–46 (2011)

  7. Coutin, L., Friz, P., Victoir, N.: Good rough path sequences and applications to anticipating stochastic calculus. Ann. Probab. 35(3), 1172–1193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davis, M.H.A., Burstein, G.: A deterministic approach to stochastic optimal control with application to anticipative optimal control. Stoch. Stoch. Rep. 40, 203–256 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diehl, J.: Topics in Stochastic Differential Equations and Rough Path Theory. TU Berlin PhD thesis

  10. Diehl, J., Friz, P., Oberhauser, H.: Regularity theory for rough partial differential equations and parabolic comparison revisited. In: Crisan et al. (eds.) Springer Proceedings in Mathematics & Statistics, vol. 100, pp. 203–238. Terry Lyons Festschrift, Stochastic Analysis and Applications (2014)

  11. Doss, H.: Liens entre équations diffé rentielles stochastiques et ordinaires. Annales de l’institut Henri Poincaré (B) Probabilités et Statistiques, 13(2). Gauthier-Villars (1977)

  12. Duncan, T.E., Pasik-Duncan, Bozenna: Linear-quadratic fractional Gaussian control. SIAM J. Control Optim. 51(6), 4504–4519 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993)

    MATH  Google Scholar 

  14. Friz, P., Hairer, M.: A Course on Rough Paths: With an Introduction to Regularity Structures. Springer, New York (2014)

    Book  MATH  Google Scholar 

  15. Friz, P., Victoir, N.: Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  16. Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216, 86–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haugh, M.B., Kogan, L.: Pricing American options: a duality approach. Oper. Res. 52(2), 258–270 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Davis, M.H.A., I. Karatzas. A deterministic approach to optimal stopping. In: Kelly, F.P. (ed.) Probability, Statistics and Optimisation, pp. 455–466. Wiley, Chichester (1994)

  19. Krylov, N.: Controlled Diffusion Processes. Springer, New York (1980)

    Book  MATH  Google Scholar 

  20. Krylov, N.V.: On the rate of convergence of finite-difference approximations for Bellman’s equations with variable coefficients. Probab. Theory Relat. Fields 117(1), 1–16 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions, P.L., Souganidis, P.E.: Fully nonlinear stochastic pde with semilinear stochastic dependence. Comptes Rendus de l’Acad mie des Sciences-Series I-Mathematics 331(8), 617–624 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic partial differential equations: non-smooth equations and applications. C.R. Acad. Sci. Paris Ser. I 327, 735–741 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lyons, T.J., et al.: Differential equations driven by rough paths: École d’été de probabilités de Saint-Flour XXXIV-2004. Springer (2007)

  24. Lyons, T.J.: Differential equations driven by rough signals. Revista Matemática Iberoamericana 14(2), 215–310 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lyons, T., Qian, Z.: System control and rough paths. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  26. Mazliak, L., Nourdin, I.: Optimal control for rough differential equations. Stoch. Dyn. 08, 23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nualart, D., Pardoux, E.: Stochastic calculus with anticipating integrands. Probab. Theory Relat. Fields 78, 535–581 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ocone, D., Étienne, P.: A generalized Itô-Ventzell formula. Application to a class of anticipating stochastic differential equations. Annales de l’institut Henri Poincaré (B) Probabilités et Statistiques 25(1), Gauthier-Villars (1989)

  29. Perkowski, N., David J.P.: Pathwise stochastic integrals for model free finance. arXiv preprint arXiv:1311.6187 (2013)

  30. Rogers, L.C.G.: Pathwise stochastic optimal control. SIAM J. Control Optim. 46(3), 1116–1132 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rogers, L.C.G.: Monte Carlo valuation of American options. Math. Financ. 12, 271–286 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sussmann, H.J.: On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab. 6(1), 19–41 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wets, R.J.B.: On the relation between stochastic and deterministic optimization. Control theory, numerical methods and computer systems modelling. Lecture Notes in Economics and Mathematical Systems, vol. 107, pp. 350–361. Springer (1975)

  34. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New Year (1999)

    Book  MATH  Google Scholar 

  35. Yosida, K.: Functional Analysis, 6th edn. Springer, New York (1980)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was commenced while all authors were affiliated to TU Berlin. The work of JD was supported by DFG project SPP1324 and DAAD/Marie Curie programme P.R.I.M.E. PKF and PG have received partial funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 258237 “RPT”. PKF acknowledges support from DFG project FR 2943/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Friz.

Appendix: RDEs with Controlled Drift

Appendix: RDEs with Controlled Drift

Theorem 29

(RDE with controlled drift) Let \(p \in [2,3)\). Let \({\mathbf {\eta }} \in \mathcal {C}^{0,{{\text {p-var}}}}\) a geometric p-variation rough path. Let \(\gamma > p\). Let U be the subset of a separable Banach space. Let \(b: {\mathbb {R}} ^e \times U \rightarrow {\mathbb {R}} ^e\) such that \(b(\cdot ,u) \in \mathrm{Lip}^1( { \mathbb {R}} ^e)\) uniformly in \(u \in U\) (i.e. \(\sup _{u\in U} ||b(\cdot ,u)||_{ \mathrm{Lip}^1( {\mathbb {R}} ^e)} < \infty \)) and such that \(u \mapsto b(\cdot ,u)\) is measurable. Let \(\sigma _1,\ldots ,\sigma _d \in \mathrm{Lip} ^\gamma ( {\mathbb {R}} ^e)\). Let \(\mu : [0,T] \rightarrow U\) be measurable, i.e. \(\mu \in \mathcal {M}\).

(i) There exists a unique \(Y \in \mathcal {C}^{0,{{\text {p-var}}}}\) that solves

$$\begin{aligned} Y_t = y_0 + \int _0^t b( Y_r, \mu _r ) dr + \int _0^t \sigma ( Y ) d{\mathbf {\eta }}_r. \end{aligned}$$

Moreover the mapping

$$\begin{aligned} (x_0,\mathbf {\eta }) \mapsto Y \in \mathcal {C}^{0,{{\text {p-var}}}} \end{aligned}$$

is locally Lipschitz continuous, uniformly in \(\mu \in \mathcal {M}\).

(ii) Assume that \(u \mapsto b(\cdot ,u)\) is Lipschitz. If we use the topology of convergence in measure on \(\mathcal {M}\), then

$$\begin{aligned} \mathcal {M} \times {\mathbb {R}} ^e \times \mathcal {C}^{0,{{\text {p-var}}}}&\rightarrow \mathcal {C}^{0,{{\text {p-var}}}} \nonumber \\ (\mu ,x_0,{\mathbf {\eta }})&\mapsto Y, \end{aligned}$$
(4.16)

is continuous.

(iii) Assume that \(u \mapsto b(\cdot ,u)\) is Lipschitz. If \(\nu : \Omega \times [0,T] \rightarrow U\) is progressively measurable and \( \mathbf {B}\) is the Stratonovich rough path lift of a Brownian motion B, then ¶

$$\begin{aligned} \left. Y \right| _{\mu =\nu ,{\mathbf {\eta }}=\mathbf {B}} = \tilde{Y}, \qquad -a.s., \end{aligned}$$
(4.17)

where \(\tilde{Y}\) is the (classical) solution to the controlled SDE

$$\begin{aligned} \tilde{Y}_t = y_0 + \int _0^t b( \tilde{Y}_r, \nu _r ) dr + \int _0^t \sigma ( \tilde{Y} ) \circ dB_r. \end{aligned}$$

(iv) If \(\sigma _1,\ldots ,\sigma _d \in \mathrm{Lip}^{\gamma +2}( { \mathbb {R}} ^e)\), we can write \(Y = \phi (t, \hat{Y}_t)\) where \(\phi \) is the solution flow to the RDE

$$\begin{aligned} \phi (t,x) = x + \int _0^t \sigma (\phi (r,x)) d{\mathbf {\eta }}_r, \end{aligned}$$

and \(\hat{Y}\) solves the classical ODE

$$\begin{aligned} \hat{Y}_t = x_0 + \int _0^t \hat{b}(r, \hat{Y}_r, \mu _r) dr, \end{aligned}$$

where we define componentwise

$$\begin{aligned} \hat{b}(t,x,u)_i = \sum _k \partial _{x_k} (\phi ^{-1})_i( t, \phi (t,x) ) b_k(\phi (t,x), u). \end{aligned}$$

Remark 30

In the last case, i.e. point (iv), we can immediately use results in [15] (Theorem 10.53) to also handle linear vector fields.

Remark 31

Given a rough path \(\mathbf {\eta }\) on [0, T], the time-inverted object \(\overleftarrow{ \mathbf {\eta } }_t := \mathbf {\eta }_{T-t}\) is again a rough path. We can hence solve controlled, backward RDEs using the previous Theorem by inverting time.

Proof

Denote for \(\mu \in \mathcal {M}\)

$$\begin{aligned} Z^\mu _t(\cdot ) := \int _0^t b(\cdot ,\mu _r) dr, \end{aligned}$$

which is a well defined Bochner integral in the space \(\mathrm{Lip}^1( { \mathbb {R}} ^e)\) (indeed, by assumption on b, \(\int _0^t ||b(\cdot ,\mu _r)||_{\mathrm{Lip}^1( {\mathbb {R}} ^e)} dr < \infty \)). Then \( Z^\mu \in C^{{{\text {1-var}}}}( [0,T], \mathrm{Lip}^1( {\mathbb {R}} ^e) )\). Indeed

$$\begin{aligned} ||Z^\mu ||_{{{\text {1-var}}}}&\le \int _0^T ||b(\cdot , \mu _r) ||_{\mathrm{Lip}^1( {\mathbb {R}} ^e)} dr \nonumber \\&\le \int _0^T \sup _{u \in \mathcal {U}} ||b(\cdot , u) ||_{\mathrm{Lip}^1( {\mathbb {R}} ^e)} dr, \end{aligned}$$
(4.18)

independent of \(\mu \in \mathcal {M}\).

By Theorem 33 we get a unique solution to the RDE

$$\begin{aligned} dY = f(Y) dZ^\mu + \sigma (Y) d{\mathbf {\eta }}, \end{aligned}$$

where \(f: {\mathbb {R}} ^e \rightarrow L(\mathrm{Lip}^1( {\mathbb {R}} ^e), {\mathbb {R}} ^e)\) is the evaluation operator, i.e. \(f(y) V := V(y)\). This gives existence of the controlled RDE as well as continuity in the starting point and in \({\mathbf {\eta }}\). By (4.18), this is independent of \(\mu \in \mathcal {M}\) and we hence have shown (i).

Concerning (ii), assume now that \(U \ni u \mapsto b(\cdot ,u) \in \mathrm{Lip} ^1 \) is Lipschitz. Using the representation given in the proof of (i) it is sufficient to realize that if \(\mu ^n \rightarrow \mu \in \mathcal {M}\) in measure, then \(Z^{\mu ^n} \rightarrow Z^\mu \) in \(C^{{{\text {1-var}}}}([0,T],\mathrm{Lip}^1( {\mathbb {R}} ^e))\).

Concerning (iii): First of all, we can regard \(\nu \) as a measurable mapping from \((\Omega , {\mathcal {F}} )\) into the space of all measurable mappings from \([0,T] \rightarrow U\) with the topology of convergence in measure. Indeed, if U is a compact subset of a separable Banach space, then this follows from the equivalence of weak and strong measurability for Banach space valued mappings (Pettis Theorem, see Section V.4 in [35]). If U is a general subset of a separable Banach space, then define \(\nu ^n: \Omega \rightarrow \mathcal {M}\) with \( \nu ^n(\omega )_t := \Phi ^n( \nu (\omega )_t )\). Here \(\Phi ^n\) is a (measurable) nearest-neighbor projection on \(\{x_1,\ldots , x_n\}\), the sequence \((x_k)_{k \ge 0}\) being dense in the Banach space. Then \(\nu ^n\) is taking values in a compact set and hence by the previous case, is measurable as a mapping to \( \mathcal {M}\). Finally \(\nu \) is the pointwise limit of the \(\nu ^n\) and hence also measurable.

Hence \(\left. Y \right| _{\mu =\nu ,{\mathbf {\eta }}=\mathbf {B}}\) is measurable, as the concatenation of measurable maps (here we use the joint continuity of RDE solutions in the control and the rough path, i.e. continuity of the mapping (4.16)).

Now, to get the equality (4.17): we can argue as in [14] using the Riemann sum representation of stochastic integral.

(iv) This follows from Theorem 1 in [9] or Theorem 2 in [5]. \(\square \)

Remark 32

One can also prove “by hand” existence of a solution, using a fixpoint argument, like the one used in [16]. This way one arrives at the same regularity demands on the coefficients. Using the infinite dimensional setting makes it possible to immediately quote existing results on existence, which shortens the proof immensely. We thank Terry Lyons for drawing our attention to this fact.

In the proof of the previous theorem we needed the following version of Theorem 6.2.1 in [25].

Theorem 33

Let VWZ be some Banach spaces. Let tensor products be endowed with the projective tensor norm.Footnote 8 Let \(p \in [2,3)\) \({\mathbf {\eta }} \in \mathcal {C}^{0,{{\text {p-var}}}}(W)\) and \(Z \in C^{{{\text {q-var}}}}([0,T], V)\) for some \(1/q > 1 - 1/p\). Let \(f: Z \rightarrow L(V,Z)\) be \(\mathrm{Lip}^1\), let \(g: Z \rightarrow L(W,Z)\) be \(\mathrm{Lip}^\gamma \), \(\gamma > p\). Then there exists a unique solution \(Y \in \mathcal {C} ^{0,{{\text {p-var}}}}(Z)\) to the RDE

$$\begin{aligned} dY = f(Y) dZ + g(Y) d{\mathbf {\eta }}, \end{aligned}$$

in the sense of Lyons.Footnote 9

Moreover for every \(R>0\) there exists \(C = C(R)\) such that

$$\begin{aligned} \rho _{{{\text {p-var}}}}( Y, \bar{Y} ) \le C ||Z - \bar{Z}||_{{{\text {q-var}}}}. \end{aligned}$$

whenever (ZX) and \((\bar{Z}, X)\) are two driving paths with \(||Z||_{{{\text {q-var}}}}, ||\bar{Z}||_{{{\text {q-var}}}}, ||X||_{{{\text {p-var}}}} \le R\).

Proof

Since Z and X have complementary Young regularity (i.e. \(1/p + 1/q > 1\)) there is a canonical joint rough path \(\lambda \) over (ZX), where the missing integrals of Z and the cross-integrals of Z and X are defined via Young integration. So we have

$$\begin{aligned} \lambda _{s,t} = 1 + \left( \begin{array}{c} Z_{s,t} \\ X_{s,t} \end{array} \right) + \left( \begin{array}{cc} \int _s^t Z_{s,r} \otimes dZ_r &{} \int _s^t Z_{s,r} \otimes d\eta _r \\ \int _s^t \eta _{s,r} \otimes dZ_r &{} \int _s^t \eta _{s,r} \otimes d\eta _r \end{array} \right) \end{aligned}$$

Then, by Theorem 6.2.1 in [25], there exists a unique solution to the RDE

$$\begin{aligned} dY = h(Y) d\lambda , \end{aligned}$$

where \(h = (f, g)\).

We calculate how \(\lambda \) depends on Z. For the first level we have of course \(||\lambda ^{(1)} - \bar{\lambda }^{(1)}||_{{{\text {p-var}}}} \le ||Z - \bar{Z}||_{{{\text {q-var}}}}\). For the second level we have, by Young’s inequality,

$$\begin{aligned} \left| \int _{s}^{t} Z_{s,r} dZ_r - \int _{s}^{t} \bar{Z}_{s,r} d\bar{Z}_r\right|&\le \left| \int _{s}^{t} Z_{s,r} d\left[ Z_r - \bar{Z}_r \right] \right| +|\int _{s}^{t} Z_{s,r} - \bar{Z}_{s,r} d\bar{Z}_r| \\&\le c ||Z||_{{{\text {q-var}}};[s,t]} ||Z - \bar{Z}||_{{{\text {q-var}}};[s,t]}\\&\quad + c ||Z - \bar{Z}||_{{{\text {q-var}}};[s,t]} ||Z||_{{{\text {q-var}}};[s,t]}. \end{aligned}$$

and similarily

$$\begin{aligned} |\int _{s}^{t} X_{s,r} dZ_r - \int _{s}^{t} X_{s,r} d\bar{Z}_r| \le c ||X||_{{{\text {p-var}}};[s,t]} ||Z||_{{{\text {q-var}}};[s,t]}. \end{aligned}$$

Together this gives

$$\begin{aligned} \rho _{{{\text {p-var}}}}( \lambda , \bar{\lambda }) \le c ||Z - \bar{Z}||_{{{\text {q-var}}}}. \end{aligned}$$

Plugging this into the continuity estimate of Theorem 6.2.1 in [25] we get

$$\begin{aligned} \rho _{{\text {p-var}}}( Y, \bar{Y} ) \le C ||Z - \bar{Z}||_{{{\text {q-var}}}} \end{aligned}$$

as desired. \(\square \)

Remark 34

The following Lemma as well as the proof the Pontryagin principle use the concept of controlled rough paths in the sense of Gubinelli [16]. Even though it is usually set up in Hölder spaces, the modification to variation spaces poses no problem (see [29, Section4.1]). In particular we define for a path Y controlled by \(\eta \) with derivative \(Y'\)

$$\begin{aligned} ||Y,Y'||_{\eta ,{{\text {p-var}}}} := ||Y'||_{{{\text {p-var}}}} + ||R||_{ {\text {p/2-var}} }, \end{aligned}$$

where \(R_{s,t} := Y_{s,t} - Y'_s \eta _{s,t}\).

Lemma 35

Let \({\mathbf {\eta }}\) be a geometric p-variation rough path, \(p \in (2,3)\). Let M be controlled by \(\eta \) and for \(\varepsilon \in (0,1]\) let \((A^\varepsilon , (A')^\varepsilon )\) be controlled by \(\eta \) with

$$\begin{aligned} ||A^\varepsilon , (A')^\varepsilon ||_{\eta ,{{\text {p-var}}}} = O(\varepsilon ). \end{aligned}$$

Let \(X^\varepsilon \) solve

$$\begin{aligned} dX^\varepsilon _t&= dA^\varepsilon _t + A_t d{\mathbf {\eta }}_t \nonumber \\ X^\varepsilon _0&= 0. \end{aligned}$$
(4.19)

Then

$$\begin{aligned} \rho _{{\text {p-var}}}( X^\varepsilon , 0 ) = O(\varepsilon ). \end{aligned}$$

Proof

For every \(\varepsilon \) there exists a unique solution solution to (4.19), and it is uniformly bounded in \(\varepsilon \in (0,1]\).

This follows from [15, Theorem10.53], by considering \((A^\varepsilon , {\mathbf {\eta }})\) as a joint rough path.

We can hence, uniformly in \(\varepsilon \), replace the linear vector field by a bounded one.

We then get from [14, Theorem8.5]

$$\begin{aligned} \rho _{{\text {p-var}}}(X^\varepsilon , X^0 ) \le c\, \rho _{{\text {p-var}}}( (A^\varepsilon , {\mathbf {\eta }}), (0, {\mathbf {\eta }}) ). \end{aligned}$$

where \(X^0\) denotes the unique solution to (4.19) with \(A^\varepsilon \) replaced by the constant 0-path.

Obviously \(X^0 \equiv 0\) and it easy to see that

$$\begin{aligned} \rho _{{\text {p-var}}}( (A^\varepsilon , {\mathbf {\eta }}), (0, {\mathbf {\eta }}) ) = O(\varepsilon ), \end{aligned}$$

which yields the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diehl, J., Friz, P.K. & Gassiat, P. Stochastic control with rough paths. Appl Math Optim 75, 285–315 (2017). https://doi.org/10.1007/s00245-016-9333-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-016-9333-9

Keywords

Mathematics Subject Classification

Navigation