Skip to main content
Log in

Extremal eigenvalue problems for composite membranes, II

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

Given an open bounded connected set Ω ⊂R N and a prescribed amount of two homogeneous materials of different density, for smallk we characterize the distribution of the two materials in Ω that extremizes thekth eigenvalue of the resulting clamped membrane. We show that these extremizers vary continuously with the proportion of the two constituents. The characterization of the extremizers in terms of level sets of associated eigenfunctions provides geometric information on their respective interfaces. Each of these results generalizes toN dimensions the now classical one-dimensional work of M. G. Krein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch, H., Variational Convergence for Functions and Operators, Pitman, Boston, 1984.

    Google Scholar 

  2. Auchmuty, G., Dual variational principles for eigenvalue problems, in Nonlinear Functional Analysis and Its Applications, F. Browder, ed., American Mathematical Society, Providence, RI, 1986, pp. 55–71.

    Google Scholar 

  3. Barbu, V., and Precupanu, T., Convexity and Optimization in Banach Spaces, Reidel, Boston, 1986.

    Google Scholar 

  4. Boccardo, L., and Marcellini, P., Sulla convergenza delle soluzioni di disequazioni variazionali, Ann. Mat. Pura Appl. 4(110), 1977, pp. 137–159.

    Google Scholar 

  5. Bourbaki, N., Topological Vector Spaces, Springer-Verlag, New York, 1987, Chapters 1–5.

    Google Scholar 

  6. Brezis, H., Analyse Fonctionelle, Masson, Paris, 1983.

    Google Scholar 

  7. Cea, J., and Malanowski, K., An example of a max-min problem in partial differential equations, SIAM J. Control 8(3), 1970, pp. 305–316.

    Google Scholar 

  8. Cosner C., and Schmitt, K., On the geometry of the level sets of positive solutions of semilinear elliptic equations, Rocky Mountain J. Math. 18(2), 1988, pp. 277–286.

    Google Scholar 

  9. Ekeland, I., and Temam, R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.

    Google Scholar 

  10. Friedland, S., Extremal eigenvalue problems defined for certain classes of functions, Arch. Rational Mech. Anal., 67(1), 1977, pp. 73–81.

    Google Scholar 

  11. Gidas, B., Ni, W., and Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68, 1979, pp. 209–243.

    Google Scholar 

  12. Gilbarg, D., and Trudinger, N., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983.

    Google Scholar 

  13. Jouron, C., Sur un problème d'optimisation ou la contrainte porte sur la fréquence fondamentale, RAIRO Anal. Numèr. 12(4), 1978, pp. 349–374.

    Google Scholar 

  14. Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1984.

    Google Scholar 

  15. Kawohl, B., Rearrangements and Convexity of Level Sets in PDE, Springer-Verlag, New York, 1985.

    Google Scholar 

  16. Kesavan, S., Homogenization of elliptic eigenvalue problems I, Appl. Math. Optim. 5, 1979, pp. 153–167.

    Google Scholar 

  17. Knaster, B., Kuratowski, C., and Mazurkiewicz, S., Eine beweis des fixpunksatzes fürn-dimensionale simplexe, Fund. Math. 14, 1929 pp. 132–137.

    Google Scholar 

  18. Kohn, R., and Strang, G., Optimal design and relaxation of variational problems I, II, III, Comm. Pure Appl. Math. 39, 1986, pp. 113–137, 139–182, and 353–377.

    Google Scholar 

  19. Krein, M. G., On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, AMS Translations Ser. 2(1), 1955, pp. 163–187.

    Google Scholar 

  20. Mikhlin, S. G., Variational Methods in Mathematical Physics, Macmillan, New York, 1964.

    Google Scholar 

  21. Olhoff, N., Optimal design with respect to structural eigenvalues, Proc. 15th Int. Congress of Theoretical and Applied Mechanics, 1980, Rimrott and Tabarrok, eds., North-Holland, Amsterdam, 1980, pp. 133–149.

    Google Scholar 

  22. Roberts, A., and Varberg, D., Convex Functions, Academic Press, New York, 1973.

    Google Scholar 

  23. Stuart, C. A., and Toland, J. F., A variational method for boundary value problems with discontinuous nonlinearities, London Math. Soc. 2(21), 1980, pp. 319–328.

    Google Scholar 

  24. Tahraoui, R., Quelques remarques sur le controle des valeurs propres, in Nonlinear PDE's and Their Applications, College de France Seminar, Volume VIII, H. Brezis and J. L. Lions, eds. Longman, Essex, 1988, pp. 176–213.

    Google Scholar 

  25. Tartar, L., Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics, Heriot-Watt Symposium IV, R. J. Knops, ed., Pitman, London, 1979.

    Google Scholar 

  26. Treves, F., Basic Linear Partial Differential Equations, Academic Press, New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Kinderlehrer

The work of the first author was supported in part by NSF Grant DMS-8201719 (A. Manitius, P. I.), an IBM fellowship, a GE teaching incentive, and DARPA Contract F49620-87-C-0065. That of the second author was supported in part by ONR Grant N00014-84-5-516, AFOSR Grant AFOSR-86-0180, and NSF Grant DMS-8713722.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, S.J., McLaughlin, J.R. Extremal eigenvalue problems for composite membranes, II. Appl Math Optim 22, 169–187 (1990). https://doi.org/10.1007/BF01447326

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447326

Keywords

Navigation