Skip to main content

Advertisement

Log in

Evaluating the biochemical traits of novel Trichoderma-based biofilms for use as plant growth-promoting inoculants

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Bacteria-mediated plant growth promotion is a well-established and complex phenomenon that is often achieved by the activities of more than one plant growth-promoting (PGP) trait, which may not always be present in a single organism. Biofilms developed using a combination of two organisms with useful plant growth-promoting rhizobacteria (PGPR) traits may provide a definite advantage. In this context, in vitro studies were conducted evaluating the PGP traits of novel biofilms developed using Trichoderma as matrix and agriculturally important bacteria (Azotobacter chroococcum, Pseudomonas fluorescens and Bacillus subtilis) as partners. Such biofilms exhibited higher values for various biochemical attributes as compared to the individual organisms and dual cultures. TrichodermaBacillus and TrichodermaPseudomonas biofilms exhibited enhanced antifungal activity, ammonia, indole acetic acid (IAA) and siderophore production, as compared to the other treatments. TrichodermaAzotobacter biofilm recorded the highest nitrogenase activity and 1-aminocyclopropane-1-carboxylic (ACC) deaminase activity. The synergism in terms of the PGP traits in the biofilms revealed their promise as superior PGP inoculants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez VM, von der Weid I, Seldin L, Santos AL (2006) Influence of growth conditions on the production of extracellular proteolytic enzymes in Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2. Lett Appl Microbiol 43:625–630

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed  CAS  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Blumer C, Hass D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

    Article  PubMed  CAS  Google Scholar 

  • Costacurta A, Vandaleyden J (1995) Accumulation of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  PubMed  CAS  Google Scholar 

  • Davey ME, O’Toole AG (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  PubMed  CAS  Google Scholar 

  • Dye DW (1962) The inadequacy of the usual determinative tests for identification of Xanthomonas sp. New Zealand J Sci 5:393–416

    Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a Gram-positive perspective. FEMS Microbiol Lett 171:1–9

    Article  PubMed  CAS  Google Scholar 

  • Espinosa-Urgel M, Kolter R, Ramos JL (2002) Root colonization by Pseudomonas putida: love at first sight. Microbiology 148:341–343

    PubMed  CAS  Google Scholar 

  • Fischer SE, Fischer SI, Magris S, Mori GB (2007) Isolation and characterization of bacteria from the rhizosphere of wheat. World J Microbiol Biotechnol 23:895–903

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and Genetic Mechanisms used by Plant Growth-promoting Bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Guetsky R, Stienberg D, Elad Y, Fischer E, Dinoor A (2002) Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92:976–985

    Article  PubMed  Google Scholar 

  • Haggag WM, Timmusk S (2008) Colonization of peanut roots by biofilm forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol 104(4):961–969

    Article  PubMed  CAS  Google Scholar 

  • Hamon MA, Lazazzera BA (2001) The sporulation transcription factor spo0A is required for biofilm developed in Bacillus subtilis. Mol Microbiol 42(5):1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Hardy RWF, Burns RC, Holsten RD (1973) Application of the acetylene-ethylene assay for measurements of nitrogen fixation. Soil Biol Biochem 5:47–81

    Article  CAS  Google Scholar 

  • Hartmann A, Singh M, Klingmfiller W (1983) Isolation and characterization of Azospirillum mutants excreting high amount of indole acetic acid. J Microbiol 29:916–923

    CAS  Google Scholar 

  • He Z, Kisla D, Zhang L, Yuan C, Green-Church KB, Yousef AE (2007) Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel antibiotic and polymyxin. Appl Environ Microbiol 73:168–178

    Article  PubMed  CAS  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of l aminocyclopropane- 1-carboxylic acid. Agric Biol Chem 42:1825–1831

    Article  CAS  Google Scholar 

  • Jackson ML (1967) Soil chemical analysis. Prentice Hall of India Pvt. Ltd, New Delhi

    Google Scholar 

  • Jayasinghearachchi HS, Seneviratne G (2004) A bradyrhizobial- Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biol Fertil Soils 40:432–434

    Article  CAS  Google Scholar 

  • Jenson HL (1954) The Azotobacteriacae. Bacteriol Rev 18:195–214

    Google Scholar 

  • King JE (1932) The colorimetric determination of phosphorus. Biochem J 26:292–297

    PubMed  CAS  Google Scholar 

  • Lee J, Jayaramann A, Wood TK (2007) Indole is an interspecies biofilm signal mediated bty SdiA. BMC Microbiol 7:42

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  PubMed  CAS  Google Scholar 

  • Mandal SM, Mondal KC, Dey S, Pati BR (2007) Optimization of cultural and nutritional conditions for indole −3- acetic acid production by a Rhizobium sp. isolated from root nodules of Vigna Mungo (L.) Hepper. Res J Microbiol 2:238–246

    Google Scholar 

  • Manjula K, Kishore GK, Girish AG, Singh SD (2004) Combined Application of Pseudomonas fluorescens and Trichoderma viride has an improved biocontrol activity against stem Rot in Groundnut. Plant Pathol J 20(1):75–80

    Article  Google Scholar 

  • Mathesius U (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derives of chitin oligosaccharides. Plant J 14:23–34

    Article  PubMed  CAS  Google Scholar 

  • Nazir R, Warmink JA, Boersma FGH, van Elsas JD (2010) Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 71:169–185

    Article  PubMed  CAS  Google Scholar 

  • Normander B, Prosser JL (2000) Bacterial origin and community composition in the Barley phytosphere as a function of habitat and presowing conditions. Appl Environ Microbiol 66(10):4372–4377

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial accumulation of indole −3- acetic acid. Can J Microbiol 42:207–220

    Article  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing of ACC deaminase-containing plant growth promoting rhizobacteria. Plant Physiol 118:10–15

    Article  CAS  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  PubMed  CAS  Google Scholar 

  • Saharan K, Sarma MVRK, Roesti AS, Prakash A, Johri BN, Aragno M, Bisaria VS, Sahai V (2010) Cell Growth and Metabolites Produced by Fluorescent Pseudomonad R62 in Modified Chemically Defined Medium. World Acad Sci Engg Technol 67:867–871

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Sen R, Nurmiaho-Lassila EL, Haahtela K., Korhonen, T (1996) Specificity and mode of primary attachment of Pseudomonas fluorescens strains to the cell walls of ectomycorrhizal fungi. In: Azcon-Aguilar C, Barea JM (eds), 4th European Symposium on Mycorrhizae. Mycorrhizas in Integrated Systems from Genes to Plant Development. European Commission, Granada, Spain, pp. 661–664

  • Seneviratne G (2003) Development of eco-friendly, beneficial microbial biofilms. Curr Sci 85:1395–1396

    Google Scholar 

  • Shaukat K, Affrasayab S, Hasnain S (2006) Growth responses of Triticum aestivum to plant growth promoting rhizobacteria used as a biofertilizer. Res J Microbiol 1:330–338

    Article  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Vandrleyden J, Remans R (2007) Indole −3- acetic acid in microbial and microorganism- plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Spiers AJ, Rainey PB (2005) The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology 151:2829–2839

    Article  PubMed  CAS  Google Scholar 

  • Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951–1957

    Article  PubMed  CAS  Google Scholar 

  • Suresh CK, Bagyaraj DJ (2002) Mycorrhiza-microbe Interface: Effect on Rhizosphere. In: Sharma AK, Johri BN (eds) Arbuscular Mycorrhizae. Scientific Publishers, Enfield, pp 7–28

    Google Scholar 

  • Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodi DV, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant-Microbe Interact 13:1293–1300

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Wagner EG (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Timmusk S, van West P, Gow NAR, Wagner EGH (2003) Antagonistic effects of Paenibacillus polymyxa towards the oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. In: Mechanism of Action of the Plant Growth Promoting Bacterium Paenibacillus polymyxa. PhD thesis. Uppsala: Uppsala University

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 11:7292–7300

    Article  Google Scholar 

  • Triveni S, Prasanna R, Saxena AK (2012) Optimization of conditions for in vitro development of Trichoderma viride based biofilms as potential inoculants. Folia Microbiol 57:431–437

    Google Scholar 

  • Ugoji EO, Laing MD, Hunter CH (2005) Colonization of Bacillus spp. on seeds and in plant rhizoplane. J Environ Biol 26:459–466

    PubMed  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    PubMed  CAS  Google Scholar 

  • Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa–plant root interations. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331

    Article  PubMed  CAS  Google Scholar 

  • Warmink JA, van Elsas JD (2009) Migratory response of soil bacteria to Lyophyllum sp. strain Karsten in soil microcosms. Appl Environ Microbiol 75:2820–2830

    Article  PubMed  CAS  Google Scholar 

  • Warmink JA, Nazir R, Corten B, van Elsas JD (2011) Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem 4:760–765

    Article  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular Ecology of Rhizosphere Microorganisms. Academic, NY, pp 1–18

    Chapter  Google Scholar 

  • Zarrin F, Saleemi M, Zia M, Sultan T, Aslam M, Rehman RU, Chaudhary FM (2009) Antifungal activity of plant growth promoting rhizobacteria isolates against Rhizoctonia solani in wheat. Afr J Biotechnol 8(2):219–225

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Post Graduate School and Director, Indian Agricultural Research Institute, New Delhi, India for providing fellowship towards PhD program to the first author. The first author is also thankful to Acharya N.G. Ranga Agricultural University for granting study leave towards undertaking PhD program. The authors are grateful to the Division of Microbiology, IARI, New Delhi for providing necessary facilities to undertake this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Saxena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 39 kb)

Supplementary Fig. 1

Siderophore production by the bacteria, individually, in dual cultures and as biofilms (JPEG 66 kb)

High Resolution Image

(TIFF 483 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triveni, S., Prasanna, R., Shukla, L. et al. Evaluating the biochemical traits of novel Trichoderma-based biofilms for use as plant growth-promoting inoculants. Ann Microbiol 63, 1147–1156 (2013). https://doi.org/10.1007/s13213-012-0573-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0573-x

Keywords

Navigation