Skip to main content
Log in

Combination of chemical and electron-impact ionisation with GC×GC–qMS for characterization of fatty alcohol alkoxylate polymers in the low-molecular-weight range up to 700 Da

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The class of fatty alcohol alkoxylates describes surfactants that are synthesised by reaction of fatty alcohols with alkoxides such as ethylene oxide or propylene oxide or a combination of both as copolymers. Such alkoxylates are used, for example, as nonionic surfactants in home and industrial cleaning and washing agents. Chemical characteristics of such alkoxylate copolymers, for example the degree of alkoxylation, the arrangement of building blocks (random or block polymerisation), the type of the starter, and endcapping, play an important role in application behaviour. The analysis of these characteristics is challenging because in many cases such copolymers have high polydispersity and a large number of constitutional isomers depending on the degree of alkoxylation. Furthermore, the alkoxylates often occur in a complex multicomponent matrix. Here we present a method for characterization of silylated fatty alcohol alkoxylates in the low-molecular-weight range by means of comprehensive two-dimensional gas chromatography–mass spectrometry with electron impact and chemical ionisation. This method also enables detailed analysis of the alkoxylates in a complex matrix such as modern detergents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. McKenzie DA (1978) Nonionic surfactants. J Am Oil Chem Society 55:93–97

    Article  CAS  Google Scholar 

  2. Thiele B, Nollet LML (eds) (2007) Analysis of surfactants in samples from the aquatic environment. In: Nollet LML, Handbook of water analysis. 2nd edn. CRC Press, pp 669–671

  3. Santacesaria E, Di Serio M, Tesser R (2008) Production of Ethylene Oxyde/Propylenoxyde Oxyde Block Copolymers. In: Zoller U, Sosis P (eds) Handbook of Detergents: Part F: Production. CRC Press, New York, pp 253–256

    Google Scholar 

  4. Kosswig K, Stache H (eds) (1993) Die Tenside. Carl Hanser Verlag München, Wien

  5. Karsa DR, Porter MR (eds) (1994) Biodegradability of surfactants. Springer Netherlands

  6. Parker RE, Isaacs NS (1959) Mechanisms of epoxide reactions. Chem Rev 59:737–799

    Article  CAS  Google Scholar 

  7. Fabry B (1991) Tenside-Eigenschaften, Rohstoffe, Produktion, Anwendungen. Chem Unserer Zeit 25:214–222

    Article  CAS  Google Scholar 

  8. de Guertechin LO (ed)(1999) Surfactants: classification. In Handbook of detergents. Part A: Properties. Marcel Dekker, New York, pp 31–37

  9. Andree H (ed) (1976) Waschmittelchemie-Aktuelle Themen aus Forschung und Entwicklung. A. Hüthig Verlag, Heidelberg

  10. Combs MT, Johnson DD, Szekely-Klepser G (2005) Use of a liquid chromatography-ion trap mass spectrometer for end-group characterization of various polyethoxylate materials. J Surfactants Deterg 8:263–269

    Article  CAS  Google Scholar 

  11. Jandera P, Fischer J, Lahovska H, Novotna K, Cesla P, Kolarova L (2006) Two-dimensional liquid chromatography normal-phase and reversed-phase separation of (co)oligomers. J Chromatogr A 1119:3–10

    Article  CAS  Google Scholar 

  12. Janssen HG, de Koning S, Brinkman UA (2004) On-line LC-GC and comprehensive two-dimensional LC×GC–ToF MS for the analysis of complex samples. Anal Bioanal Chem 378:1944–1947

    Article  CAS  Google Scholar 

  13. Schoenmakers PJ, Truyols G, Decrop WMC (2006) A protocol for designing comprehensive two-dimensional liquid chromatography separation systems. J Chromatogr A 1120:282–290

    Article  CAS  Google Scholar 

  14. Janssen HG, Boers W, Steenbergen H, Horsten R, Floter E (2003) Comprehensive two-dimensional liquid chromatography×gas chromatography: evaluation of the applicability for the analysis of edible oils and fats. J Chromatogr A 1000:385–400

    Article  CAS  Google Scholar 

  15. Dorman FL, Overton EB, Whiting JJ, Cochran JW, Gardea-Torresdey J (2008) Gas chromatography. Anal Chem 80:4487–4497

    Article  CAS  Google Scholar 

  16. Mondello L, Tranchida PQ, Dugo P, Dugo G (2008) Comprehensive two-dimensional gas chromatography-mass spectrometry: a review. Mass Spectrom Rev 27:101–124

    Article  CAS  Google Scholar 

  17. Bertsch W (1999) Two-dimensional gas chromatography. concepts, instrumentation, and applications-Part 1: Fundamentals, conventional two-dimensional gas chromatography, selected applications. J High Res Chromatogr 22:647–665

    Article  CAS  Google Scholar 

  18. Schomburg G (1995) Two-dimensional gas chromatography: principles, instrumentation, methods. J Chromatogr A 703:309–325

    Article  CAS  Google Scholar 

  19. Liu Z, Phillips JB (1991) Comprehensive 2-dimensional gas-chromatography using an on-column thermal modulator interface. J Chromatogr Sci 29:227–231

    CAS  Google Scholar 

  20. Dallüge J (2003) Multidimensionality in capillary gas chromatography. Master thesis, University of Amsterdam

  21. Hubner J, Taheri R, Melchior D, Kling HW, Gab S, Schmitz OJ (2007) Analysis of tensides in complex samples with comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Anal Bioanal Chem 388:1755–1762

    Article  Google Scholar 

  22. Wulf V, Wienand N, Wirtz M, Kling HW, Gäb S, Schmitz OJ (2009) Analysis of special surfactants by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. (accepted to J Chromatogr A)

  23. Schilling FC, Tonelli AE (1986) C-13 NMR determination of poly(Propylene Oxide) microstructure. Macromolecules 19:1337–1343

    Article  CAS  Google Scholar 

  24. Hesse M, Meier H, Zeeh B (eds) (1995) Spektroskopische Methoden in der organischen Chemie. 5th edn. Thieme Verlag Stuttgart

  25. Wulf V (2007) Analyse von Tensiden in technischen Reinigerformulierungen mittels GC×GC–(TOF)MS. Diploma thesis, University of Wuppertal

  26. Kaiser H, Specker H (1956) Bewertung und Vergleich von Analyseverfahren. Fresenius Z Anal Chem 149:46–56

    Article  CAS  Google Scholar 

  27. Henze N (ed) (2008) Stochastik für Einsteiger. Springer Verlag, pp 189–194

  28. Johnson AE, Geissler PR, Talley AD (1990) Determination of relative ethoxylation rate constants from supercritical fluid chromatographic analysis of ethoxylated alcohols. J Am Oil Chem Society 67:123–131

    Article  CAS  Google Scholar 

  29. Geissler PR, Johnson AR (1990) Effect of process variables, degree of ethoxylation and alcohol structure on relative ethoxylation rate constants. J Am Oil Chem Society 67:541–546

    Article  CAS  Google Scholar 

  30. Booth C, Attwood D (2000) Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution. Macromol Rapid Commun 21:501–527

    Article  CAS  Google Scholar 

  31. Lu XJ, Myers MR, Artz WE (1993) Supercritical fluid chromatographic analysis of the propoxylated glycerol esters of oleic acid. J Am Oil Chem Society 70:355–360

    Article  CAS  Google Scholar 

  32. Hodges KL, Kester WE, Weiderrich DL, Grover JA (1979) Determination of substitution in cellulose ethers by zeisel-gas chromatography. Anal Chem 51:2172–2176

    Article  CAS  Google Scholar 

  33. Gronski W (1991) 13C-NMR characterization of ethylene oxide/propylene oxide adducts. Makromol Chem 19:591–601

    Article  Google Scholar 

  34. Wittenbrink RJ, Mart CJ, Ryan DF, Cook BR (2002) High performance environmentally friendly, low temperature, drilling fluids. U.S. Patent 6,455,474,B1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver J. Schmitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dück, R., Wulf, V., Geißler, M. et al. Combination of chemical and electron-impact ionisation with GC×GC–qMS for characterization of fatty alcohol alkoxylate polymers in the low-molecular-weight range up to 700 Da. Anal Bioanal Chem 396, 2273–2283 (2010). https://doi.org/10.1007/s00216-009-3434-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3434-0

Keywords

Navigation