Skip to main content
Log in

Cell spreading on quartz crystal microbalance elicits positive frequency shifts indicative of viscosity changes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cell attachment and spreading on solid surfaces was investigated with a home-made quartz crystal microbalance (QCM), which measures the frequency, the transient decay time constant and the maximal oscillation amplitude. Initial interactions of the adsorbing cells with the QCM mainly induced a decrease of the frequency, coincident with mass adsorption. After about 80 min, the frequency increased continuously and after several hours exceeded the initial frequency measured before cell adsorption. Phase contrast and fluorescence microscopy indicated that the cells were firmly attached to the quartz surface during the frequency increase. The measurements of the maximal oscillation amplitude and the transient decay time constant revealed changes of viscoelastic properties at the QCM surface. An important fraction of these changes was likely due to alterations of cytosolic viscosity, as suggested by treatments of the attached cells with agents affecting the actin and microtubule cytoskeleton. Our results show that viscosity variations of cells can affect the resonance frequency of QCM in the absence of apparent cell desorption. The simultaneous measurements of the maximal oscillation amplitude, the transient decay time constant and the resonance frequency allow an analysis of cell adsorption to solid substratum in real time and complement cell biological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig. 2.
Fig 3A–C.
Fig 4A–D.
Fig 5.
Fig 6Aa–Ff.
Fig 7.
Fig 8.
Fig 9.
Fig 10.

Similar content being viewed by others

References

  1. Walpita D, Hay E (2002) Nat Rev Mol Cell Biol 3(2):137–141

    Article  CAS  PubMed  Google Scholar 

  2. McIntosh JR, Grishchuk EL, West RR (2002) Annu Rev Cell Dev Biol 18:193–219

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein LS, Philp AV (1999) Annu Rev Cell Dev Biol 15:141–183

    Google Scholar 

  4. Huang S, Ingber DE (1999) Nat Cell Biol 1(5):E131–138

    Article  CAS  PubMed  Google Scholar 

  5. Huang S, Ingber DE (2000) Exp Cell Res 261(1):91–103

    Article  CAS  PubMed  Google Scholar 

  6. Barbee KA, Davies PF, Ratneshwar L (1994) Circ Res 74:163–171

    CAS  PubMed  Google Scholar 

  7. PouratiJ, Maniotis A, Spiegel D, Schaffer JL, Butler JP, Fredberg JJ, Ingber DE, Stamenovic D, Wang N (1998) Am J Physiol 274:C1283–C1289

    PubMed  Google Scholar 

  8. Allen RD (1985) Ann Rev Biophys Biophys Chem 14:265

    Google Scholar 

  9. Chamberlain C, Hahn KM (2000) Traffic 1(10):755–762

    Article  CAS  PubMed  Google Scholar 

  10. Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenovic D (2002) Am J Physiol Cell Physiol 282(3):C606–C616

    CAS  PubMed  Google Scholar 

  11. Puig-De-Morales M, Grabulosa M, Alcaraz J, Mullol J, Maksym GN, Fredberg JJ, Navajas D (2001) J Appl Physiol 91(3):1152–1159

    CAS  PubMed  Google Scholar 

  12. Berrios JC, Schroeder MA, Hubmayr RD (2001) J Appl Physiol 91(1):65–73

    CAS  PubMed  Google Scholar 

  13. Wang Q, Chiang ET, Lim M, Lai J, Rogers R, Janmey PA, Shwpro D, Doerschuk CM (2001) Blood 97(3):660–668

    Article  CAS  PubMed  Google Scholar 

  14. Bausch AR, Hellerer U, Essler M, Aepfelbacher M, Sackmann E (2001) Biophys J 80(6):2649–2657

    CAS  PubMed  Google Scholar 

  15. Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Biophys J 75:2038–2049

    CAS  PubMed  Google Scholar 

  16. Ziemann F, Rädler J, Sackmann E (1994) Biophys J 66:2210–2216

    CAS  PubMed  Google Scholar 

  17. Kolega J (1986) J Cell Biol 102:1400–1411

    CAS  PubMed  Google Scholar 

  18. Hochmuth RM, Waugh RE (1987) Annu Rev Physiol 49:209–219

    CAS  PubMed  Google Scholar 

  19. Evans E, Yeung A (1989) Biophys J 56:151–160

    PubMed  Google Scholar 

  20. Evans E, Berk D, Leung A (1991) Biophys J 59:838–848

    CAS  PubMed  Google Scholar 

  21. Sung KLP, Kwan MK, Maldonado F, Akeson WH (1994) J Biomech Eng 116:237–242

    CAS  PubMed  Google Scholar 

  22. Petermon NO, McConnaughey WB, Elson EL (1982) Proc Natl Acad Sci USA 79:5327–5331

    CAS  PubMed  Google Scholar 

  23. Pastermank C, Wong S, Elson EL (1995) C Cell Biol 128:355–361

    Google Scholar 

  24. Janshoff A, Galla H-J, Steinem C (2000) Angew Chem Int Ed 39:4004–4032

    Article  CAS  Google Scholar 

  25. Jones JL, Meiure JP (1969) Anal Chem 41:484

    CAS  Google Scholar 

  26. Meiure JP, Jones JL (1969) Talanta 16:149–150

    Article  Google Scholar 

  27. Sauerbrey G (1959) Z Phys 155:206–222

    CAS  Google Scholar 

  28. Nomura T, Iijima M (1981) Anal Chim Acta 131:97–102

    Article  CAS  Google Scholar 

  29. Kanazawa KK, Gordon JG (1985) Anal Chem 57:1770–1771

    CAS  Google Scholar 

  30. Marx KA, Zhou T, Montrone A, Schulze H, Braunhut SJ (2001) Biosens Bioelectron 16:773–782

    Article  CAS  PubMed  Google Scholar 

  31. Zhou T, Marx KA, Warren M, Schulze H, Braunhut SJ (2000) Biotechnol Prog 16:268–277

    Article  CAS  PubMed  Google Scholar 

  32. Wegener J, Seebach J, Janshoff A, Galla H-J (2000) Biophys J 78:821–2833

    Google Scholar 

  33. Janshoff A, Wegener J, Sieber M, Galla H-J (1996) Eur Biophys J 25:93–103

    CAS  PubMed  Google Scholar 

  34. Otto K, Elwing H, Hermansson M (1999) J Bacteriol 181(17):5210–5218

    CAS  PubMed  Google Scholar 

  35. Nimeri G, Fredriksson C, Elwing H, Liu L, Rodahl M, Kasemo B (1998) Coll Surf B Biointerfaces 11:255–264

    Article  CAS  Google Scholar 

  36. Fredriksson C, Khilman S, Kasemo B (1998) J Mater Sci Mater Med 9:785–788

    Article  CAS  Google Scholar 

  37. Galli Marxer C, Collaud Coen M, Bissig H, Greber UF, Schlapbach L (2003) Anal Bioanal Chem (in press) DOI 10.1007/s00216-003-2081-0

  38. Suomalainen M, Nakano MY, Keller S, Boucke K, Stidwill RP, Greber UF (1999) J Cell Biol 144:657–672

    Article  CAS  PubMed  Google Scholar 

  39. Holzinger A (2001) Methods Mol Biol 161:109–120

    CAS  PubMed  Google Scholar 

  40. Bubb MR, Spector I, Beyer BB, Fosen KM (2000) J Biol Chem 275:5163–5170

    Article  CAS  PubMed  Google Scholar 

  41. Bubb MR, Senderwicz AM, Sausville EA, Duncan KL, Korn ED (1994) J Biol Chem 269:14869–14871

    CAS  PubMed  Google Scholar 

  42. Nakano MY, Boucke K, Suomalainen M, Stidwill RP, Greber UF (2000) J Virol 74(15):7085–7095

    Article  CAS  PubMed  Google Scholar 

  43. Coue M, Brenner SL, Spector I, Korn ED (1987) FEBS Lett 213:316–318

    Article  CAS  PubMed  Google Scholar 

  44. Spector I, Shochet NR, Blasberger D, Kashman Y (1989) Cell Motil Cytoskel 13:127–144

    CAS  PubMed  Google Scholar 

  45. Urbanik E, Ware BR (1989) Arch Biochem Biophys 269:181–187

    CAS  PubMed  Google Scholar 

  46. Cooper JA (1987) J Cell Biol 105:1473–1478

    CAS  PubMed  Google Scholar 

  47. Schiff PB, Fant J, Horwitz SB (1979) Nature 277:665–667

    CAS  PubMed  Google Scholar 

  48. Kanazawa KK (1997) Faraday Discuss 107:77–90

    Article  Google Scholar 

  49. Rodahl M, Höök F, Kasemo B (1996) Anal Chem 68:2219–2227

    Article  CAS  Google Scholar 

  50. Galli Marxer C, Collaud Coen M, Schlapbach L (2003) J Colloid Interface Sci 261(2):291–298

    Article  Google Scholar 

  51. Wegener J, Janshoff A, Galla H-J (1998) Eur Biophys J 28:26–37

    Google Scholar 

  52. Geiger B, Bershadsky A (2001) Curr Opin Cell Biol 13(5):584–592

    Article  CAS  PubMed  Google Scholar 

  53. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Annu Rev Cell Biol 4:487–525

    CAS  PubMed  Google Scholar 

  54. Petit V, Thiery JP (2000) Biol Cell 92:477–494

    Article  CAS  PubMed  Google Scholar 

  55. Bereiter-Hahn J, Luck M, Miebach T, Stelzer HK, Voth M (1990) J Cell Sci 96(1):171–188

    PubMed  Google Scholar 

  56. Hoebeke J, Van Nijen G, DeBrabender M (1976) Biochem Biophys Res Commun 69:319–324

    CAS  PubMed  Google Scholar 

  57. Wang N (1998) Hypertension 32:162–165

    CAS  PubMed  Google Scholar 

  58. Thoumine O, Cardoso O, Meister J-J (1999) Eur Biophys J 28:222–234

    Article  CAS  PubMed  Google Scholar 

  59. Wakatsuki T, Schwab B, Thompson NC, Elson EL (2001) J Cell Sci 114(5):1025–1036

    CAS  PubMed  Google Scholar 

  60. Nogales E, Wolf SG, Downing KH (1998) Nature 391:199–203

    CAS  PubMed  Google Scholar 

  61. Wilson L, Jordan MA (1994) Microtubules. Hyams and Lloyd, Wiley-Liss, pp 59–83

Download references

Acknowledgments

We gratefully acknowledge Laurent Spicher and Francis Bourqui for their work in the building of the QCM. We also thank Bianca Saam and Karin Boucke for the cell culture and Dr Robert Stidwill for the confocal images. This work was supported by the Dr h.c. Robert Mathys Stiftung (RMS) Foundation and the Swiss National Science Foundation (TopNano21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carine Galli Marxer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli Marxer, C., Collaud Coen, M., Greber, T. et al. Cell spreading on quartz crystal microbalance elicits positive frequency shifts indicative of viscosity changes. Anal Bioanal Chem 377, 578–586 (2003). https://doi.org/10.1007/s00216-003-2080-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2080-1

Keywords

Navigation