Skip to main content
Log in

Natural wax constituents of a supercritical fluid CO2 extract from quince (Cydonia oblonga Mill.) pomace

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The chemical constituents of a lipophilic extract from quince (Cydonia oblonga Mill.), obtained by supercritical fluid CO2 extraction of the dried fruit pomace were investigated. Solvent partition of quince wax with n-hexane or acetone yielded an insoluble (crystalline) and a soluble (oily) fraction. Both fractions were analyzed separately using gas chromatography/mass spectrometry (GC/MS). The insoluble fraction consisted of saturated n-aldehydes, n-alcohols and free n-alkanoic acids of carbon chain lengths between 22 and 32, with carbon chain lengths of 26 and 28 dominating. Also odd-numbered unbranched hydrocarbons, mainly C27, C29 and C31, were detected particularly in the acetone-insoluble fraction (total, 15.8%). By means of vacuum liquid chromatography, triterpenoic acids were separated from the hexane-insoluble matter and identified as a mixture of ursolic, oleanolic and betulinic acids. The major constituents of the hexane-soluble fraction were glycerides of linoleic [Δ9,12, 18:2] and oleic [Δ9, 18:1] acids, accompanied by free linoleic, oleic and palmitic acids (C16). Moreover β-sitosterol, Δ5-avenasterol as well as trace amounts of other sterols were assigned. Finally the carotenoids phytoene and phytofluene were identified and quantified by UV/vis and high-performance liquid chromatography/MS techniques, yielding 1.0 and 0.3% of the quince wax, respectively. It is anticipated that the complex of lipid constituents from quince wax may exert interesting biological activities, the elucidation of which awaits further studies.

Quince fruits and some of their fruit wax constituents. Clockwise (starting at one o’clock): structure formulas of Δ5-avenasterol, linoleic acid, oleanolic acid, and phytofluen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APCI:

atmospheric pressure chemical ionization

GC:

gas chromatography

HPLC:

high-performance liquid chromatography

LC:

liquid chromatography

MS:

mass spectrometry

PCC:

pyridinium chlorochromate

TIC:

total ion chromatogram

TLC:

thin-layer chromatography

TMSi:

trimethylsilyl

VLC:

vacuum liquid chromatography

References

  1. Lutz A, Winterhalter P, Schreier P (1991) Tetrahedron Lett 32:5943–5944

    Article  CAS  Google Scholar 

  2. Lutz-Roder A, Schneider M, Winterhalter P (2002) Nat Prod Lett 16:119–122

    Article  CAS  Google Scholar 

  3. Lutz A, Winterhalter P (1992) J Agric Food Chem 40:1116–1120

    Article  CAS  Google Scholar 

  4. Fiorentino A, D’Abrosca B, Pacifico S, Mastellone C, Piscopo V, Monaco P (2006) J Agric Food Chem 54:9592–9597

    Article  CAS  Google Scholar 

  5. Sousa C, Silva BM, Andrade PB, Valentao P, Silva A, Ferreres F, Seabra RM, Ferreira MA (2007) Food Chem 100:331–338

    Article  CAS  Google Scholar 

  6. Silva BM, Andrade PB, Martins RC, Valentao P, Ferreres F, Seabra RM, Ferreira MA (2005) J Agric Food Chem 53:111–122

    Article  CAS  Google Scholar 

  7. Silva BM, Andrade PB, Ferreres F, Seabra RM, Oliveira MBPP, Ferreira MA (2005) Nat Prod Res 19:275–281

    Article  CAS  Google Scholar 

  8. Tommasi ND, Piacente S, Simone FD, Pizza C (1996) J Agric Food Chem 44:1676–1681

    Article  Google Scholar 

  9. Ferreres F, Silva BM, Andrade PB, Seabra RM, Ferreira MA (2003) Phytochem Anal 14:352–359

    Article  CAS  Google Scholar 

  10. Lindberg B, Mosihuzzaman M, Nahar N, Abeysekera RM, Brown RG, Willison JHM (1990) Carbohydrate Res 207:307–310

    Article  CAS  Google Scholar 

  11. Dodova-Anghelova MS (1969) Dokl Bolg Akad Nauk 22:1269–1272

    Google Scholar 

  12. Ivanov C, Dodova-Anghelova MS (1970) Dokl Bolg Akad Nauk 23:287–290

    CAS  Google Scholar 

  13. Holloway PJ, Jeffree CE (2005) In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopedia of applied plant sciences, vol 3. Elsevier, Oxford, p 1190–1204

    Google Scholar 

  14. Eisenbacher W, Göttsch PJ, Niemann K, Zosel K (2001) Fluid Phase Equilib 10:315–318

    Article  Google Scholar 

  15. Hamburger M, Baumann D, Adler S (2004) Phytochem Anal 15:46–54

    Article  CAS  Google Scholar 

  16. Wen M, Jetter R (2007) Phytochemistry 68:2563–2569

    Article  CAS  Google Scholar 

  17. Ali M, Sharma N (1997) J Indian Chem Soc 74:658–659

    CAS  Google Scholar 

  18. Stahl E, Schild W (1986) Isolierung und Charakterisierung von Naturstoffen. Fischer, Stuttgart, pp 173–174

    Google Scholar 

  19. Galgon T, Höke D, Dräger B (1999) Phytochem Anal 10:187–190

    Article  CAS  Google Scholar 

  20. Bauernfeind JC (ed) (1981) Carotenoids as colorants and vitamin A precursors. Academic, New York, p 908

  21. Verardo G, Pagani E, Geatti P, Martinuzzi P (2003) Anal Bioanal Chem 376:659–667

    Article  CAS  Google Scholar 

  22. Lamberton JA (1965) Aust J Chem 18:911–913

    CAS  Google Scholar 

  23. Shibata H, Maejima S, Shimizu S (1978) Agric Biol Chem 42:1589–1590

    CAS  Google Scholar 

  24. Lopez C, Bourgaux C, Lesieur P, Riaublanc A, Ollivon M (2006) Chem Phys Lipids 144:17–33

    Article  CAS  Google Scholar 

  25. Ensikat HJ, Boese M, Mader W, Barthlott W, Koch K (2006) Chem Phys Lipids 144:45–59

    CAS  Google Scholar 

  26. Zlatanov M, Ivanov S, Antova G, Kouleva L (1998) Riv Ital Sost Grasse 75:405–407

    CAS  Google Scholar 

  27. Lampi AM, Juntunen L, Jari T, Piironen V (2002) J Chromatogr B 777:83–92

    Article  CAS  Google Scholar 

  28. Johnsson L, Andersson RE, Dutta PC, Paresh C (2003) J Am Oil Chem Soc 80:777–783

    Article  CAS  Google Scholar 

  29. Britton G (1995) In: Britton G, Liaan-Jensen S, Pfander H (eds) Carotenoids: spectroscopy, vol 1B. Birkhäuser, Basel, pp 13–63

    Google Scholar 

  30. Breithaupt DE, Bamedi A (2001) J Agric Food Chem 49:2064–2070

    Article  CAS  Google Scholar 

  31. Cai SS, Short LC, Syage JA, Potvin M, Curtis JM (2007) J Chromatogr A 1173:88–97

    Article  CAS  Google Scholar 

  32. Kalogeropoulos N, Chiou A, Mylona A, Ioannou MS, Andrikopoulos NK (2007) Food Chem 100:509–517

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jürgen Conrad (Department of Chemistry, Hohenheim University, Stuttgart, Germany) for recording the NMR spectra, Bernhard Weigl (BASF, Ludwigshafen, Germany) for a sample of synthetic phytoene and Zohar Nir (LycoRed Ltd., Israel) for providing a sample of a phytoene/phytofluene mixture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian C. Stintzing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 18.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, P., Berger, M., Bertrams, J. et al. Natural wax constituents of a supercritical fluid CO2 extract from quince (Cydonia oblonga Mill.) pomace. Anal Bioanal Chem 391, 633–646 (2008). https://doi.org/10.1007/s00216-008-2000-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2000-5

Keywords

Navigation