Skip to main content
Log in

Drug profiling using planar microelectrode arrays

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microelectrode arrays (MEAs) with evenly distributed multiple sensor spots have been designed for specific applications. Using the MEAs, we determined the relative profiles of potassium channel openers (KCOs) on cultured embryonic Sprague-Dawley rat cardiac myocytes. KCO, pinacidil (PIN), cromakalim (CROM), SDZ PCO400 (SDZ), or its vehicle, was added to the myocytes cumulatively. The action potential signal shapes in the presence of PIN and SDZ show that the changes in voltage over time and the magnitudes of the associated voltage change were reduced concentration-dependently. CROM affected sodium influx more than PIN and SDZ. The comparisons of changes in the rate of beating and propagation speed in the presence of KCOs were made using their corresponding pD2 values (the negative log of EC50). All KCOs caused concentration-dependent reductions in the rate of beating and propagation speed, with SDZ being the most potent. In addition to the signal shapes, rate of beating, and propagation speed, the origin of excitation and the excitation pattern inside the culture can be also extracted. The results show that the present system can differentiate the effects of different KCOs on myocytes. It might be possible to utilise the MEA as a means to classify drug action based upon a combined interpretation of the three different datasets gained from the extracellular recordings. The combination of these observations might be used as ‘drug signatures’ when profiling drugs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gross GW, Rhoades BK, Azzazy HME, Ming-Chi W (1995) Biosens Bioelectron 10:553–567

    Article  CAS  Google Scholar 

  2. Jahnsen H, Kristensen BW, Thiebaud P, Noraberg J, Jakobsen B, Bove M, Martinoia S, Koudelka-Hep M, Grattarola M, Zimmer J (1999) Methods 18:160–172

    Article  CAS  Google Scholar 

  3. Maher MP, Pine J, Wright J, Tai YC (1999) J Neurosci Methods 87:45–56

    Article  CAS  Google Scholar 

  4. Claverol-Tinture E, Ghirardi M, Fiumara F, Rosell X, Cabestany J (2005) J Neural Eng 2:L1–L7

    Article  CAS  Google Scholar 

  5. Denyer MCT, Riehle M, Britland ST, Offenhäusser A (1998) Med Biol Eng Comput 36:638–644

    Article  CAS  Google Scholar 

  6. Ecken H, Ingebrandt S, Krause M, Richter D, Hara M, Offenhäusser A (2003) Electrochim Acta 48:3355–3362

    Article  CAS  Google Scholar 

  7. Rothermel A, Kurz R, Ruffer M, Weigel W, Jahnke HG, Sedello AK, Stepan H, Faber R, Schulze-Forster K, Robitzki AA (2005) Cell Physiol Biochem 16:51–58

    Article  CAS  Google Scholar 

  8. Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA (1999) Ann Biomed Eng 27:697–711

    Article  CAS  Google Scholar 

  9. Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, Haemmerle H (2003) Anal Bioanal Chem 377:486–495

    Article  CAS  Google Scholar 

  10. Ingebrandt S, Yeung CK, Krause M, Offenhäusser A (2001) Biosens Bioelectron 16:565–570

    Article  CAS  Google Scholar 

  11. Yeung CK, Ingebrandt S, Krause M, Offenhäusser A, Knoll W (2001) J Pharmacol Toxicol Methods 45:207–214

    Article  CAS  Google Scholar 

  12. Ingebrandt S, Yeung CK, Staab W, Zetterer T, Offenhäusser A (2003) Biosens Bioelectron 18:429–435

    Article  CAS  Google Scholar 

  13. Krause M, Ingebrandt S, Richter D, Denyer M, Scholl M, Sprössler C, Offenhäusser A (2000) Sens Actuators B 70:101–107

    Article  Google Scholar 

  14. Wrobel G, Zhang Y, Krause H-J, Wolters N, Sommerhage F, Offenhäusser A, Ingebrandt S (2007) Biosens Bioelectron 22:1092–1096

    Article  CAS  Google Scholar 

  15. Reppel M, Pillekamp F, Lu ZJ, Halbach M, Brockmeier K, Fleischmann BK, Hescheler J (2004) J Electrocardiol 37:104–109

    Article  Google Scholar 

  16. Löffler-Walz C, Quast U (1998) Br J Pharmacol 123:1395–1402

    Article  Google Scholar 

  17. Noma A (1993) Cardiovasc Drug Ther 7:515–520

    Article  Google Scholar 

  18. Seino S, Miki T (2003) Prog Biophys Mol Biol 81:133–176

    Article  CAS  Google Scholar 

  19. Gross GJ, Peart JN (2003) Am J Physiol Heart Circ Physiol 285:H921–H930

    CAS  Google Scholar 

  20. Duncker DJ, Verdouw PD (2000) Cardiovasc Drug Ther 14:7–16

    Article  CAS  Google Scholar 

  21. Kinoshita H, Hatano Y (2004) Curr Med Chem Cardiovasc Hematol Agents 2:99–106

    Article  CAS  Google Scholar 

  22. Das B, Sarkar C (2005) Life Sci 77:1226–1248

    Article  CAS  Google Scholar 

  23. Kloner RA, Rezkalla SH (2004) J Am Coll Cardiol 44:276–286

    Article  Google Scholar 

  24. Miura T, Miki T (2003) Curr Vasc Pharmacol 1:251–258

    Article  CAS  Google Scholar 

  25. Kicinska A, Szewczyk A (2003) Gen Physiol Biophys 22:383–395

    CAS  Google Scholar 

  26. Lathrop DA, Contney SJ, Bosnjak ZJ, Stowe DF (1998) Gen Pharmacol 31:125–131

    Article  CAS  Google Scholar 

  27. Mannhold R (2004) Med Res Rev 24:213–266

    Article  CAS  Google Scholar 

  28. Pollesello P, Mebazaa A (2004) Curr Opin Crit Care 10:436–441

    Article  Google Scholar 

  29. Tamargo J, Caballero R, Gomez R, Valenzuela C, Delpon E (2004) Cardiovasc Res 62:9–33

    Article  CAS  Google Scholar 

  30. Jahangir A, Terzic A (2005) J Mol Cell Cardiol 39:99–112

    Article  CAS  Google Scholar 

  31. Meyburg S, Goryll M, Moers J, Ingebrandt S, Böcker-Meffert S, Lüth H, Offenhäusser A (2006) Biosens Bioelectron 21:1037–1044

    Article  CAS  Google Scholar 

  32. Krause M (2000) Untersuchungen zur Zell-Transistor Kopplung mittels der Voltage-Clamp Technik. PhD thesis, Johannes Gutenberg Universität Mainz, Mainz, http://archimed.uni-mainz.de

  33. Zhang Y, Wrobel G, Wolters N, Ingebrandt S, Krause HJ, Otto R (2005) Device for the non-invasive measurement of cell signals. Patent WO002006050683A1, 15 Nov 2005

  34. Halbach MD, Egert U, Hescheler J, Banach K (2003) Cell Physiol Biochem 13:271–284

    Article  CAS  Google Scholar 

  35. Sprössler C, Denyer M, Britland S, Curtis A, Knoll W, Offenhäusser A (1999) Phys Rev E 60:2171–2176

    Article  Google Scholar 

  36. Banach K, Halbach MD, Hu P, Hescheler J, Egert U (2003) Am J Physiol Heart Circul Physiol 284:H2114–H2123

    CAS  Google Scholar 

  37. Egashira K, Nishii K, Nakamura KI, Kumai M, Morimoto S, Shibata Y (2004) Anat Rec Part A 280A:973–979

    Article  CAS  Google Scholar 

  38. Meiry G, Reisner Y, Feld Y, Goldberg S, Rosen M, Ziv N, Binah O (2001) J Cardiovasc Electrophysiol 12:1269–1277

    Article  CAS  Google Scholar 

  39. Eun JS, Park JA, Choi BH, Cho SK, Kim DK, Kwak YG (2005) Biol Pharm Bull 28:657–660

    Article  CAS  Google Scholar 

  40. Pillekamp F, Reppel M, Dinkelacker V, Duan YQ, Jazmati N, Bloch W, Brockmeier K, Hescheler J, Fleischmann BK, Koehling R (2005) Cell Physiol Biochem 16:127–132

    Article  CAS  Google Scholar 

  41. Zhu G, Okada M, Murakami T, Kamata A, Kawata Y, Wada K, Kaneko S (2000) Neurosci Lett 294:53–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an Earmarked Grant from the Research Grant Council of Hong Kong under contract no. 611205 and the Helmholtz Association of National Research Centres, Germany. The authors would like to thank N. Wolters (IBN-2, Electronic Workshop) and Y. Zhang (IBN-2) for their technical expertise in designing the current MEA system and M. Schindler (IBN-2) for the bandwidth characterisation. MEA chips were fabricated by M. Krause in a previous project at the Max Planck Institute for Polymer Research, Mainz, Germany within the group of W. Knoll.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ingebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video File (WMV 397 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeung, C.K., Sommerhage, F., Wrobel, G. et al. Drug profiling using planar microelectrode arrays. Anal Bioanal Chem 387, 2673–2680 (2007). https://doi.org/10.1007/s00216-007-1172-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1172-8

Keywords

Navigation