Skip to main content
Log in

A new vapor generation system for mercury species based on the UV irradiation of mercaptoethanol used in the determination of total and methyl mercury in environmental and biological samples by atomic fluorescence spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new vapor generation system for mercury (Hg) species based on the irradiation of mercaptoethanol (ME) with UV was developed to provide an effective sample introduction unit for atomic fluorescence spectrometry (AFS). Preliminary investigations of the mechanism of this novel vapor generation system were based on GC–MS and FT–IR studies. Under optimum conditions, the limits of determination for inorganic divalence mercury and methyl mercury were 60 and 50 pg mL−1, respectively. Certified reference materials (BCR 463 tuna fish and BCR 580 estuarine sediment) were used to validate this new method, and the results agreed well with certified values. This new system provides an attractive alternative method of chemical vapor generation (CVG) of mercury species compared to other developed CVG systems (for example, the traditional KBH4/NaOH–acid system). To our knowledge, this is the first systematic report on UV/ME-based Hg species vapor generation and the determination of total and methyl Hg in environmental and biological samples using UV/ME–AFS.

A new vapor generation system for mercury species using mercaptoethanol under UV irradiation was developed as an effective sample introduction unit for atomic fluorescence spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dedina J, Tsalev DL (1995) Hydride generation atomic absorption spectrometry. Wiley, New York

    Google Scholar 

  2. Sturgeon RE, Mester Z (2002) Appl Spectrosc 56:202A–212A

    Article  CAS  Google Scholar 

  3. Pohl P (2004) Trends Anal Chem 23:87–101

    Article  CAS  Google Scholar 

  4. Pohl P (2004) Trends Anal Chem 23:21–27

    Article  CAS  Google Scholar 

  5. D’Ullivo A, Onor M, Pitzalis E (2004) Anal Chem 76:6342–6352

    Article  CAS  Google Scholar 

  6. Denkhaus E, Golloch A, Guo X, Huang BL (2001) J Anal Atom Spectrom 16:870–878

    Google Scholar 

  7. Chatterjee A, Shibata Y, Yoneda M, Banerjee R, Uchida M, Kon H, Morita M (2001) Anal Chem 73:3181–3186

    Article  PubMed  CAS  Google Scholar 

  8. Villano M, Padro A, Rubio R, Rauret G (1998) J Chromatogr A 819:211–220

    Article  Google Scholar 

  9. Guo XM, Sturgeon RE, Mester Z, Gardner GJ (2004) Anal Chem 76:2401–2405

    Article  PubMed  CAS  Google Scholar 

  10. Wang QQ, Liang J, Qiu J, Huang BL (2004) J Anal Atom Spectrom 19:715–716

    Article  CAS  Google Scholar 

  11. Liang J, Wang QQ, Huang BL (2005) Anal Bioanal Chem 381:366–372

    Article  PubMed  CAS  Google Scholar 

  12. Sturgeon RE, Guo XM, Mester Z (2005) Anal Bioanal Chem 382:881–883

    Article  PubMed  CAS  Google Scholar 

  13. Wilken RD (1992) Fresenius J Anal Chem 342:795–801

    Article  CAS  Google Scholar 

  14. Quevauviller P, Draback I, Muntau H, Griepink B (1993) Appl Organom Chem 7:413–420

    Article  CAS  Google Scholar 

  15. Puk R, Weber JH (1994) Appl Organom Chem 8:293–302

    Article  CAS  Google Scholar 

  16. Lobinski R (1997) Appl Spectrosc 51:260A–278A

    Article  ADS  CAS  Google Scholar 

  17. Sanchez Uria JE, Sanz-Medel A (1998) Talanta 47:509–524

    Article  CAS  Google Scholar 

  18. Leermakers M, Baeyens W, Quevauviller P, Horvat M (2005) Trends Anal Chem 24:383–393

    Article  CAS  Google Scholar 

  19. Hong YC, Wang QQ, Yan H, Liang J, Guo XM, Huang BL (2003) Spectrosc Spect Anal 23:354–357

    CAS  Google Scholar 

  20. Ramalhosa E, Rio Segade S, Pereira E, Vale C, Duarte A (2001) Anal Chim Acta 448:135–143

    Article  CAS  Google Scholar 

  21. Liang LN, Jiang GB, Liu JF, Hu JT (2003) Anal Chim Acta 477:131–137

    Article  CAS  Google Scholar 

  22. Ortiz AIC, Albarran YM, Rica CC (2002) J Anal Atom Spectrom 17:1595–1601

    Article  CAS  Google Scholar 

  23. Cowan DO, Drisko RL (eds) (1976) Elements of organic photochemistry. Plenum, New York

    Google Scholar 

  24. Zheng CB, Li Y, He YH, Ma Q, Hou XD (2005) J Anal Atom Spectrom 20:746–750

    Article  CAS  Google Scholar 

  25. Qiu JH, Wang QQ, Ma YN, Yang LM, Huang BL (2006) Spectrochim Acta B 61:803–809

    Article  CAS  Google Scholar 

  26. Falter R, Scholer HF (1996) Fresenius J Anal Chem 354:492–493

    CAS  Google Scholar 

  27. Krishna MVB, Ranjit M, Karunasagar D, Arunachalam J (2005) Talanta 67:70–80

    Article  CAS  Google Scholar 

  28. Rio-Segade S, Bendicho C (1999) Talanta 48:477–484

    Article  CAS  Google Scholar 

  29. Torres DP, Vieira MA, Ribeiro AS, Curtius AJ (2005) J Anal Atom Spectrom 20:289–294

    Article  CAS  Google Scholar 

  30. Hintelmann H, Hempel H, Wilken RD (1995) Environ Sci Technol 29:1845–1850

    Article  CAS  Google Scholar 

  31. Bloxham MJ, Gachanja A, Hill SJ, Worsfold PJ (1996) J Anal Atom Spectrom 11:145–148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 20535020, 21075019) and the National Basic Research Program (No. 2003CD415001). The loans of a BRAIC 610A atomic fluorescence spectrometer and Shimadzu QP2010 GC–MS are very much appreciated. We thank Miss YL Zhao for her assistance in GC-MS experiment. Professor John Hodgkiss is thanked for his assistance with the English in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuquan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Qiu, J., Yang, L. et al. A new vapor generation system for mercury species based on the UV irradiation of mercaptoethanol used in the determination of total and methyl mercury in environmental and biological samples by atomic fluorescence spectrometry. Anal Bioanal Chem 388, 831–836 (2007). https://doi.org/10.1007/s00216-007-1122-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1122-5

Keywords

Navigation