Skip to main content
Log in

Simultaneous determination of nicotine and its nine metabolites in rat blood utilizing microdialysis coupled with UPLC–tandem mass spectrometry for pharmacokinetic application

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To develop a simple and rapid method for the simultaneous determination of nicotine and its nine metabolites in rat blood, an in vivo microdialysis sampling technique coupled with ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was established for quantitation and characterization of the pharmacokinetics of nicotine and its metabolites. Microdialysis probes were inserted into the jugular vein of Sprague Dawley rats, and dialysates were collected after nicotine (0.5 mg/kg, i.p.) administration. Target analytes and corresponding deuterated internal standards were separated on a hydrophilic interaction liquid chromatography column (HILIC BEH 2.1. × 150 mm, 1.7 μm) and detected by UPLC–MS/MS under multiple reaction monitoring mode. The limits of quantification for nicotine and its nine metabolites ranged from 0.039 to 0.46 ng/mL. Intra- and inter-day precision and accuracy were well within the predefined limits of acceptability (<11 %). Pharmacokinetic results showed that the mean half-lives of nicotine, cotinine, nornicotine, norcotinine, nicotine-N′-oxide, cotinine-N′-oxide, trans-3′-hydroxy-cotinine, nicotine-N-glucuronide, cotinine-N-glucuronide, and trans-3′-hydroxy-cotinine-O-glucuronide in rat plasma were 63, 291, 175, 440, 251, 451, 322, 341, 488, and 516 min, respectively. The blood concentration-time profiles of nicotine and its nine metabolites indicate that nicotine is rapidly consumed after the administration and subsequently cotinine is generated as the main metabolite; meanwhile, cotinine and other eight minor metabolites exhibit longer retention times in rat body.

Flowchart summarizing the experimental procedure

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benowitz NL (1999) Prim Care 26:611–631

    Article  CAS  Google Scholar 

  2. Batra V, Patkar AA, Berrettini WH, Weinstein SP, Leone FT (2003) Chest 123:1730–1739

    Article  CAS  Google Scholar 

  3. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A, Stacey SN, Bergthorsson JT, Thorlacius S, Gudmundsson J, Jonsson T, Jakobsdottir M, Saemundsdottir J, Olafsdottir O, Gudmundsson LJ, Bjornsdottir G, Kristjansson K, Skuladottir H, Isaksson HJ, Gudbjartsson T, Jones GT, Mueller T, Gottsater A, Flex A, Aben KK, de Vegt F, Mulders PF, Isla D, Vidal MJ, Asin L, Saez B, Murillo L, Blondal T, Kolbeinsson H, Stefansson JG, Hansdottir I, Runarsdottir V, Pola R, Lindblad B, van Rij AM, Dieplinger B, Haltmayer M, Mayordomo JI, Kiemeney LA, Matthiasson SE, Oskarsson H, Tyrfingsson T, Gudbjartsson DF, Gulcher JR, Jonsson S, Thorsteinsdottir U, Kong A, Stefansson K (2008) Nature 452:638–642

    Article  CAS  Google Scholar 

  4. Malaiyandi V, Sellers EM, Tyndale RF (2005) Clin Pharmacol Ther 77:145–158

    Article  CAS  Google Scholar 

  5. Yildiz D (2004) Toxicon 43:619–632

    Article  CAS  Google Scholar 

  6. Boswell C, Curvall M, Elswick JRK, Leyden D (2000) Biomarkers 5:341–354

  7. Fan Z, Xie FW, Xia QL, Wang S, Ding L, Liu HM (2008) Chromatographia 68:623–627

    Article  CAS  Google Scholar 

  8. Piller M, Gilch G, Scherer G, Scherer M (2014) J Chromatogr B 951–952:7–15

    Article  Google Scholar 

  9. Heinrich-Ramm R, Wegner R, Garde AH, Baur X (2002) Int J Hyg Environ Health 205:493–499

    Article  CAS  Google Scholar 

  10. Wielkoszynski T, Tyrpien K, Szumska M (2009) J Pharm Biomed Anal 49:1256–1260

    Article  CAS  Google Scholar 

  11. Jaakkola MS, Ma J, Yang G, Chin MF, Benowitz NL, Ceraso M, Samet JM (2003) Prev Med 36:282–290

    Article  CAS  Google Scholar 

  12. Man CN, Gam LH, Ismail S, Lajis R, Awang R (2006) J Chromatogr B 844:322–327

    Article  CAS  Google Scholar 

  13. Ghosheh OA, Browne D, Rogers T, de Leon J, Dwoskin LP, Crooks PA (2000) J Pharm Biomed Anal 23:543–549

    Article  CAS  Google Scholar 

  14. Baidoo EE, Clench MR, Smith RF, Tetler LW (2003) J Chromatogr B 796:303–313

    Article  CAS  Google Scholar 

  15. Shakleya DM, Huestis MA (2009) Anal Bioanal Chem 395:2349–2357

    Article  CAS  Google Scholar 

  16. Gray TR, Shakleya DM, Huestis MA (2009) Anal Bioanal Chem 393:1977–1990

    Article  CAS  Google Scholar 

  17. Concheiro M, Gray TR, Shakleya DM, Huestis MA (2010) Anal Bioanal Chem 398:915–924

    Article  CAS  Google Scholar 

  18. Concheiro M, Shakleya DM, Huestis MA (2011) Anal Bioanal Chem 400:69–78

    Article  CAS  Google Scholar 

  19. Johansen MJ, Newman RA, Madden T (1997) Pharmacotherapy 17:464–481

    CAS  Google Scholar 

  20. Verbeeck RK (2000) Adv Drug Deliv Rev 45:217–228

    Article  CAS  Google Scholar 

  21. Tsai TH (2002) J Agric Food Chem 50:6669–6674

    Article  CAS  Google Scholar 

  22. Tsai TH, Chen YF, Chou CJ, Chen CF (2000) J Chromatogr A 870:221–226

    Article  CAS  Google Scholar 

  23. Chang YL, Tsai PL, Chou YC, Tien JH, Tsai TH (2005) J Chromatogr A 1088:152–157

    Article  CAS  Google Scholar 

  24. Vieira-Brock PL, Miller EI, Nielsen SM, Fleckenstein AE, Wilkins DG (2011) J Chromatogr B 879:3465–3474

    Article  CAS  Google Scholar 

  25. Lang HL, Wang S, Zhang QD, Zhao BB, Wang L, Cao BJ, Wang J, Mao J, Zhang JX (2013) Anal Bioanal Chem 405:2083–2089

    Article  CAS  Google Scholar 

  26. Dobrinas M, Choong E, Noetzli M, Cornuz J, Ansermot N, Eap CB (2011) J Chromatogr B 879:3574–3582

    Article  CAS  Google Scholar 

  27. Kyerematen GA, Taylor LH, deBethizy JD, Vesell ES (1988) Drug Metab Dispos 16:125–129

    CAS  Google Scholar 

  28. Ghosheh O, Dwoskin LP, Li WK, Crooks PA (1999) Drug Metab Dispos 27:1448–1455

    CAS  Google Scholar 

  29. Kyerematen GA, Vesell ES (1991) Drug Metab Rev 23:3–41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NSFC (Grant no. 21307163) and the Presidential Science and Technology Development Foundation of ZTRI, China (No. 412011CA0280).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Mao or Jianxun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Xu, Y., Lu, B. et al. Simultaneous determination of nicotine and its nine metabolites in rat blood utilizing microdialysis coupled with UPLC–tandem mass spectrometry for pharmacokinetic application. Anal Bioanal Chem 407, 4101–4109 (2015). https://doi.org/10.1007/s00216-015-8643-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8643-0

Keywords

Navigation