Skip to main content
Log in

DI-ICR-FT-MS-based high-throughput deep metabotyping: a case study of the Caenorhabditis elegansPseudomonas aeruginosa infection model

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In metabolomics there is an ever-growing need for faster and more comprehensive analysis methods to cope with the increasing size of biological studies. Direct-infusion ion-cyclotron-resonance Fourier-transform spectrometry (DI-ICR-FT-MS) is used in non-targeted metabolomics to obtain high-resolution snapshots of the metabolic state of a system. We applied this technology to a Caenorhabditis elegans–Pseudomonas aeruginosa infection model and optimized times needed for cultivation and mass-spectrometric analysis. Our results reveal that DI-ICR-FT-MS is a promising tool for high-throughput in-depth non-targeted metabolomics. We performed whole-worm metabolomics and recovered markers of the induced metabolic changes in C. elegans brought about by interaction with pathogens. In this investigation, we reveal complex metabolic phenotypes enabling clustering based upon challenge. Specifically, we observed a marked decrease in amino-acid metabolism with infection by P. aeruginosa and a marked increase in sugar metabolism with infection by Salmonella enterica. We were also able to discriminate between infection with a virulent wild-type Pseudomonas and with an attenuated mutant, making it possible to use this method in larger genetic screens to identify host and pathogen effectors affecting the metabolic phenotype of infection.

Total time needed for generation of a data matrix suitable for statistical analysis from cultivation took close to 4 days with several possible break points. Time needed for cultivation (excluding preparation of plates, etc.) was 3 days, whereas the extraction needed only 1 hour and finally mass spectrometry was performed in less than one day for positive and negative ionization mode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Menni C, Zhai G, MacGregor A, Prehn C, Römisch-Margl W, Suhre K, Adamski J, Cassidy A, Illig T, Spector T, Valdes A (2013) Targeted metabolomics profiles are strongly correlated with nutritional patterns in women. Metabolomics 9(2):506–514. doi:10.1007/s11306-012-0469-6

    Article  CAS  Google Scholar 

  2. Altmaier E, Emeny RT, Krumsiek J, Lacruz ME, Lukaschek K, Häfner S, Kastenmüller G, Römisch-Margl W, Prehn C, Mohney RP, Evans AM, Milburn MV, Illig T, Adamski J, Theis F, Suhre K, Ladwig K-H (2013) Metabolomic profiles in individuals with negative affectivity and social inhibition: a population-based study of Type D personality. Psychoneuroendocrinology 38(8):1299–1309. doi:10.1016/j.psyneuen.2012.11.014

    Article  CAS  Google Scholar 

  3. Jourdan C, Linseisen J, Meisinger C, Petersen A-K, Gieger C, Rawal R, Illig T, Heier M, Peters A, Wallaschofski H, Nauck M, Kastenmüller G, Suhre K, Prehn C, Adamski J, Koenig W, Roden M, Wichmann HE, Völzke H (2014) Associations between thyroid hormones and serum metabolite profiles in an euthyroid population. Metabolomics 10(1):152–164. doi:10.1007/s11306-013-0563-4

    Article  CAS  Google Scholar 

  4. Fuhrer T, Heer D, Begemann B, Zamboni N (2011) High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection–time-of-flight mass spectrometry. Anal Chem 83(18):7074–7080. doi:10.1021/ac201267k

    Article  CAS  Google Scholar 

  5. Heux S, Fuchs T, Buhmann J, Zamboni N, Sauer U (2012) A high-throughput metabolomics method to predict high concentration cytotoxicity of drugs from low concentration profiles. Metabolomics 8(3):433–443. doi:10.1007/s11306-011-0386-0

    Article  CAS  Google Scholar 

  6. Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB (2002) Nontargeted metabolome analysis by use of fourier transform ion cyclotron mass spectrometry. OMICS J Integr Biol 6(3):217–234

    Article  CAS  Google Scholar 

  7. Kaling M, Kanawati B, Ghirardo A, Albert A, Winkler JB, Heller W, Barta C, Loreto F, Schmitt-Kopplin P, Schnitzler J-P (2014) UV-B mediated metabolic rearrangements in poplar revealed by non-targeted metabolomics. Plant Cell Environ. doi:10.1111/pce.12348

    Google Scholar 

  8. Roullier-Gall C, Lucio M, Noret L, Schmitt-Kopplin P, Gougeon RD (2014) How subtle is the “terroir” effect? chemistry-related signatures of two “climats de bourgogne”. PLoS ONE 9(5):e97615. doi:10.1371/journal.pone.0097615

    Article  Google Scholar 

  9. Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, Mondot S, Lepage P, Rothballer M, Walker A, Bohm C, Wenning M, Wagner M, Blaut M, Schmitt-Kopplin P, Kuster B, Haller D, Clavel T (2014) High-fat diet alters gut microbiota physiology in mice. ISME J 8(2):295–308. doi:10.1038/ismej.2013.155

    Article  CAS  Google Scholar 

  10. Gläser K, Kanawati B, Kubo T, Schmitt-Kopplin P, Grill E (2014) Exploring the Arabidopsis sulfur metabolome. Plant J 77(1):31–45. doi:10.1111/tpj.12359

    Article  Google Scholar 

  11. Brenner S (1974) The Genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  Google Scholar 

  12. Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel FM (2010) Distinct Pathogenesis and Host Responses during Infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog 6(7):e1000982. doi:10.1371/journal.ppat.1000982

    Article  Google Scholar 

  13. Irazoqui JE, Urbach JM, Ausubel FM (2010) Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 10(1):47–58

    Article  CAS  Google Scholar 

  14. Müller C, Dietz I, Tziotis D, Moritz F, Rupp J, Schmitt-Kopplin P (2013) Molecular cartography in acute Chlamydia pneumoniae infections—a non-targeted metabolomics approach. Anal Bioanal Chem 405(15):5119–5131. doi:10.1007/s00216-013-6732-5

    Article  Google Scholar 

  15. Antunes LCM, Arena ET, Menendez A, Han J, Ferreira RBR, Buckner MMC, Lolić P, Madilao LL, Bohlmann J, Borchers CH, Finlay BB (2011) Impact of salmonella infection on host hormone metabolism revealed by metabolomics. Infect Immun 79(4):1759–1769. doi:10.1128/iai. 01373-10

    Article  CAS  Google Scholar 

  16. Tan M-W, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96(2):715–720

    Article  CAS  Google Scholar 

  17. Garvis S, Munder A, Ball G, de Bentzmann S, Wiehlmann L, Ewbank JJ, Tümmler B, Filloux A (2009) Caenorhabditis elegans semi-automated liquid screen reveals a specialized role for the chemotaxis gene cheB2 in pseudomonas aeruginosa virulence. PLoS Pathog 5(8):e1000540

    Article  Google Scholar 

  18. Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, Gilpin C, Levine B (2009) Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci 106(34):14564–14569. doi:10.1073/pnas.0813319106

    Article  CAS  Google Scholar 

  19. Kaniga K, Delor I, Cornelis GR (1991) A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 109(1):137–141. doi:10.1016/0378-1119(91)90599-7

    Article  CAS  Google Scholar 

  20. Lewis JA, Fleming JT (1995) Chapter 1 Basic Culture Methods. In: Henry FE, Diane CS (eds) Methods in Cell Biology, vol Volume 48. Academic Press, pp 3–29. doi:10.1016/s0091-679x(08)61381-3

  21. Porta-de-la-Riva M, Fontrodona L, Villanueva A, Cer NJ (2012) Basic caenorhabditis elegans methods: synchronization and observation. J Vis Exp 64:e4019. doi:10.3791/4019

    Google Scholar 

  22. Geier FM, Want EJ, Leroi AM, Bundy JG (2011) Cross-platform comparison of caenorhabditis elegans tissue extraction strategies for comprehensive metabolome coverage. Anal Chem 83(10):3730–3736. doi:10.1021/ac2001109

    Article  CAS  Google Scholar 

  23. Lucio M, Fekete A, Frommberger M, Schmitt-Kopplin P (2011) Metabolomics: high-resolution tools offer to follow bacterial growth on a molecular level. In: Handbook of molecular microbial ecology I. John Wiley & Sons, Inc., pp 683–695. doi:10.1002/9781118010518.ch72

  24. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  25. Suhre K, Schmitt-Kopplin P (2008) MassTRIX: mass translator into pathways. Nucleic Acids Res 36(suppl 2):W481–W484

    Article  CAS  Google Scholar 

  26. Wägele B, Witting M, Schmitt-Kopplin P, Suhre K (2012) MassTRIX reloaded: combined analysis and visualization of transcriptome and metabolome data. PLoS One 7(7):e39860. doi:10.1371/journal.pone.0039860

    Article  Google Scholar 

  27. Tziotis D, Hertkorn N, Schmitt-Kopplin P (2011) Kendrick-analogous network visualisation of ion cyclotron resonance Fourier transform mass spectra: improved options for the assignment of elemental compositions and the classification of organic molecular complexity. Eur J Mass Spectrom 17(4):6

    Article  Google Scholar 

  28. Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F, Carneiro Leticia AM, Yang C, Emili A, Philpott Dana J, Girardin Stephen E (2012) Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11(6):563–575. doi:10.1016/j.chom.2012.04.012

    Article  CAS  Google Scholar 

  29. Hoerr V, Zbytnuik L, Leger C, Tam PPC, Kubes P, Vogel HJ (2012) Gram-negative and gram-positive bacterial infections give rise to a different metabolic response in a mouse model. J Proteome Res 11(6):3231–3245. doi:10.1021/pr201274r

    Article  CAS  Google Scholar 

  30. Shen D-K, Filopon D, Chaker H, Boullanger S, Derouazi M, Polack B, Toussaint B (2008) High-cell-density regulation of the Pseudomonas aeruginosa type III secretion system: implications for tryptophan catabolites. Microbiology 154(8):2195–2208. doi:10.1099/mic. 0.2007/013680-0

    Article  CAS  Google Scholar 

  31. Chambers MC, Song KH, Schneider DS (2012) Listeria monocytogenes infection causes metabolic shifts in Drosophila melanogaster. PLoS ONE 7(12):e50679. doi:10.1371/journal.pone.0050679

    Article  CAS  Google Scholar 

  32. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res. doi:10.1093/nar/gks374

    Google Scholar 

  33. Walker A, Pfitzner B, Neschen S, Kahle M, Harir M, Lucio M, Moritz F, Tziotis D, Witting M, Rothballer M, Engel M, Schmid M, Endesfelder D, Klingenspor M, Rattei T, Castell W, de Angelis MH, Hartmann A, Schmitt-Kopplin P (2014) Distinct signatures of host-microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet. ISME J. doi:10.1038/ismej.2014.79

    Google Scholar 

  34. Walker A, Lucio M, Pfitzner B, Scheerer MF, Neschen S, de Angelis MH, Hartmann A, Schmitt-Kopplin P (2014) Importance of sulfur-containing metabolites in discriminating fecal extracts between normal and type-2 diabetic mice. J Proteome Res. doi:10.1021/pr500046b

    Google Scholar 

  35. Han J, Danell R, Patel J, Gumerov D, Scarlett C, Speir J, Parker C, Rusyn I, Zeisel S, Borchers C (2008) Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics 4(2):128–140

    Article  CAS  Google Scholar 

  36. Krajewski MP, Kanawati B, Fekete A, Kowalski N, Schmitt-Kopplin P, Grill E. Analysis of Arabidopsis glutathione-transferases in yeast. Phytochemistry (0). doi:10.1016/j.phytochem.2012.04.016

  37. Southam AD, Payne TG, Cooper HJ, Arvanitis TN, Viant MR (2007) Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method. Anal Chem 79(12):4595–4602. doi:10.1021/ac062446p

    Article  CAS  Google Scholar 

  38. Erve JCL, DeMaio W, Talaat RE (2008) Rapid metabolite identification with sub parts-per-million mass accuracy from biological matrices by direct infusion nanoelectrospray ionization after clean-up on a ZipTip and LTQ/Orbitrap mass spectrometry. Rapid Commun Mass Spectrom 22(19):3015–3026. doi:10.1002/rcm.3702

    Article  CAS  Google Scholar 

  39. Solis GM, Petrascheck M (2011) Measuring caenorhabditis elegans life span in 96 well microtiter plates. (49):e2496. doi:10.3791/2496

Download references

Acknowledgments

The authors would like to thank Thomas Rattei for the excellent leadership of the Pathomics project and suggestions to pathogen–host metabolomics.

The study was funded by German Federal Ministry of Education and Research in the frame of the ERA-NET project “Pathogen-host metabolomics and interactomics (Pathomics)” (0315442C).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Witting or Philippe Schmitt-Kopplin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witting, M., Lucio, M., Tziotis, D. et al. DI-ICR-FT-MS-based high-throughput deep metabotyping: a case study of the Caenorhabditis elegansPseudomonas aeruginosa infection model. Anal Bioanal Chem 407, 1059–1073 (2015). https://doi.org/10.1007/s00216-014-8331-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8331-5

Keywords

Navigation