Skip to main content
Log in

Electrochemical properties of silver–copper alloy microelectrodes for use in voltammetric field apparatus

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microelectrodes of silver–copper alloys have been evaluated for use in voltammetric analyses. Increased overpotential towards the hydrogen overvoltage reaction (HER) was found as a function of increased copper content in the silver. A study of oxidizing products by cyclic voltammetry (CV) in NaOH solution showed ten anodic and eight cathodic peaks which are described in the present paper. The behaviour of these alloy electrodes is somewhere between pure silver and pure copper electrodes. Differential pulse anodic stripping voltammetry (DPASV) was used to measure zinc, cadmium and lead in ultrapure water only (18 MΩcm), and good linearity was found for all metals (r 2=0.998) in the range of 0.5 to 5 ppb with a 600- to 1,200-s plating time. It was additionally found that cadmium and lead were better separated on the alloy electrodes compared to pure silver electrodes. Measurements of nickel were carried out on alloy electrodes by use of adsorptive differential pulse cathodic stripping voltammetry (Ad-DPCSV), and good linearity (r 2=1.000) was found in the range from 0.5 to 5 ppb with an adsorption time of 120 s. The alloy electrodes were also found to be sensitive to nitrate, and good linearity (r 2=0.997) was found in the range from 1 mg L−1 to 100 mg L−1 using differential pulse voltammetry (DPV) scanning from −450 mV to −1,500 mV. Addition of nitrate in ultrapure water afforded two different peaks related to the successive reductions of nitrate and nitrite. In ammonium buffer solution (pH 8.6) only one peak resulting from reduction of nitrate was observed. Furthermore, the use of alloy electrodes containing 17% Cu was tested in real samples, by installing it in a voltammetric system for monitoring of zinc and lead in a polluted river, the river Deûle, near the town of Douai in northern France. Results were found to be in agreement with parallel measurements carried out by ICP-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. http://www.johannesburgsummit.org/html/documents/summit_docs/plan_final1009.doc

  2. http://europa.eu.int/comm/environment/water/water-franework/index_en.html

  3. Utgikar VP, Chaudhary N, Koeniger A, Tabak HH, Haines JR, Govind R (2004) Water Res 38:3651–3658

    Article  PubMed  Google Scholar 

  4. Ho JW, Ho AW (1997) Environ Toxicol Water Qual 12:245–248

    Article  Google Scholar 

  5. Madoni P, Davoli D, Gorbi G (1994) Bull Environ Contam Toxicol 53:420–425

    Article  PubMed  Google Scholar 

  6. Kalvoda R (1990) Electroanalysis 2:341–346

    Article  Google Scholar 

  7. Mikkelsen Ø, Skogvold SM, Schrøder KH (2005) Electroanalysis 17:431–439

    Article  Google Scholar 

  8. El-Hasani SR, Al-Dhaheri SM, El-Maazawi MS, Kamal MM (1999) Water Sci Technol 40:67–74

    Article  Google Scholar 

  9. Bond AM (1999) Anal Chim Acta 400:333–379

    Article  Google Scholar 

  10. Brainina Kh, Henze G, Stojko N, Malakhova N, Faller C (1999) Fresenius J Anal Chem 364:285–295

    Article  Google Scholar 

  11. Diederich HJ, Meyer S, Scholz F (1994) Fresenius J Anal Chem 349:670–675

    Article  Google Scholar 

  12. Tercier ML, Buffle J, Graziottin F (1998) Electroanalysis 10:355–363

    Article  Google Scholar 

  13. Wang J (2005) Electroanalysis 17:1341–1346

    Article  Google Scholar 

  14. Goodwin A, Lawrence AL, Banks CE, Wantz F, Omanovi D, Komorsky-Lovri S, Compton RG (2005) Anal Chim Acta 533:141–145

    Article  Google Scholar 

  15. Achterberg EP, van den Berg CMG, Boussemart M, Davison W (1997) Geochim Cosmochim Acta 61:5233–5253

    Article  Google Scholar 

  16. Pižeta I, Billon G, Omanovi D, Cuculi V, Garnier C, Fischer JC (2005) Anal Chim Acta (paper available online)

  17. Luther III GW, Wilk Z, Ryans RA, Meyerson AL (1986) Mar Pollut Bull 17:535–542

    Article  Google Scholar 

  18. Mikkelsen Ø, Skogvold SM, Schrøder KH (2005) Electroanalysis 17:431–439

    Article  Google Scholar 

  19. Borgo CA, Ferrari RT, Colpini LMS, Costa CMM, Baesso ML, Bento AC (1999) Anal Chim Acta 385:103–109

    Article  Google Scholar 

  20. Bonfil Y, Brand M, Kirowa-Eisner E (1999) Anal Chim Acta 387:85–95

    Article  Google Scholar 

  21. Cavalleri O, Bittner AM, Kind H, Kern K (1999) Z Phys Chem 208:107–136

    Google Scholar 

  22. Wang J, Lu JM, Hocevar SB, Farias PAM, Ogorevc B (2000) Anal Chem 72:3218–3222

    Article  PubMed  Google Scholar 

  23. Cordon F, Ramírez SA, Gordillo GJ (2002) J Electroanal Chem 534:131–141

    Article  Google Scholar 

  24. Ensafi AA, Zarei K (2000) Talanta 52:435–440

    Article  Google Scholar 

  25. Hutton EA, van Elteren JT, Ogorevc B, Smyth MR (2004) Talanta 63:849–855

    Article  Google Scholar 

  26. Wang J, Lu J (2000) Electrochem Commun 2:390–393

    Article  Google Scholar 

  27. Kefala G, Economou A, Voulgaropoulos A, Sofoniou M (2003) Talanta 61:603–610

    Article  Google Scholar 

  28. Chi Q, Göpel W, Ruzgas T, Gorton L, Heiduschka P (1997) Electroanalysis 9:357–365

    Article  Google Scholar 

  29. Brainina KZ, Kubysheva IV, Miroshnikova EG, Parshakov SI, Maksimov YG, Volkonsky AE (2001) Field Anal Chem Technol 5:260–271

    Article  Google Scholar 

  30. Mikkelsen Ø, Schrøder KH (2002) Anal Lett 33:3253–3269

    Google Scholar 

  31. Mikkelsen Ø, Schrøder KH, Aarhaug TA (2001) Collect Czech Chem Commun 66:465–472

    Article  Google Scholar 

  32. Mikkelsen Ø, Schrøder KH (2002) Anal Chim Acta 458:249–256

    Article  Google Scholar 

  33. Pižeta I, Billon G, Fischer JC, Wartel M (2003) Electroanalysis 15:1389–1396

    Article  Google Scholar 

  34. Tercier M-L, Parthasarathy N, Bufle J (1995) Electroanalysis 7:55–63

    Article  Google Scholar 

  35. Jiang JH, Wu BL, Cha CS, Zhai RS (1998) Electroanalysis 10:343–346

    Article  Google Scholar 

  36. Matysik FM, Gläser P, Werner G (1993) Anal Bioanal Chem 349:646–649

    Google Scholar 

  37. Norouzi P, Ganjali MR, Sepehri A, Ghorbani M (2005) Sens Actuators B 110:239–245

    Article  Google Scholar 

  38. Baldo MA, Bragato C, Mazzocchin GA, Daniele S (1998) Electrochim Acta 43:3413–3422

    Article  Google Scholar 

  39. Billon G, van den Berg CMG (2004) Electroanalysis 16:1583–1591

    Article  Google Scholar 

  40. Wieckowski A (1999) Interfacial electrochemistry, theory, experiments, and applications. Marcel Dekker, Basel

    Google Scholar 

  41. Hayden BE, Hodgson A (1999) J Phys Condens Matter 11:8397–8415

    Article  Google Scholar 

  42. Abd El Rehim SS, Hassan HH, Ibrahim MAM, Amin MA (1998) Monatsh Chem 129:1103–1117

    Google Scholar 

  43. Assaf FH, Zaky AM, Abd El-Rehim SS (2002) Appl Surf Sci 187:18–27

    Article  Google Scholar 

  44. Zaky AM (2001) Br Corros J 36:59–64

    Article  Google Scholar 

  45. Hansen M, Anderko K (1958) Constitution of binary alloys 18. McGraw Hill, New York

    Google Scholar 

  46. Ciszkowska M, Stojek Z (1999) J Electroanal Chem 466:129–143

    Article  Google Scholar 

  47. Colombo C, van den Berg CMG (1997) Anal Chim Acta 337:29–40

    Article  Google Scholar 

  48. Bodini ME, Sawyer D (1977) Anal Chem 49:485–489

    Article  PubMed  Google Scholar 

  49. Davenport RJ, Johnson DC (1973) Anal Chem 45:1979–1980

    Article  Google Scholar 

  50. Genders JD, Hartsough D, Hobbs DT (1996) J Appl Electrochem 26:1–9

    Article  Google Scholar 

  51. Cattarin S (1992) J Appl Electrochem 22:1077–1081

    Article  Google Scholar 

  52. Fedurco M, Kedzierzawski P, Augustynski J (1999) J Electrochem 146:2569–2572

    Article  Google Scholar 

  53. Fogg AG, Scullion SP, Edmonds TE, Birch BJ (1991) Analyst 116:573–579

    Article  Google Scholar 

  54. Shibata M, Yoshida K, Furuya N (1998) J Electrochem Soc 145:2348–2353

    Google Scholar 

  55. Bouamrane F, Tadjeddine A, Butler JE, Tenne R, Levy-Clement C (1996) J Electroanal Chem 405:95–99

    Article  Google Scholar 

  56. Tenne R, Patel K, Hashimoto K, Fujishima A (1993) J Electroanal 347:409–415

    Article  Google Scholar 

  57. Pletcher D, Poorabedi Z (1979) Electrochim Acta 24:1253–1256

    Article  Google Scholar 

  58. Albery WJ, Hagged BGD, Jones Ch.P, Pritchard MJ, Svanberg LR (1985) J Electroanal Chem 188:257–263

    Article  Google Scholar 

  59. Fogg AG, Scullion P, Edmonds TE (1991) Analyst 116:573–579

    Article  Google Scholar 

  60. Davenport RJ, Johnson DC (1974) Anal Chem 46:1971–1978

    Article  PubMed  Google Scholar 

  61. Kvarackheliya PK, Machavariani T.Sh (1982) Coll Czechoslovak Chem Commun 47:2615–2619

    Google Scholar 

  62. Krista J, Kopanica M, Novotný L (2000) Electroanalysis 12:199–204

    Article  Google Scholar 

  63. Davis J, Moorcroft MJ, Wilkins SJ, Compton RG, Cardosi MF (2000) Analyst 125:737–741

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øyvind Mikkelsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skogvold, S.M., Mikkelsen, Ø., Billon, G. et al. Electrochemical properties of silver–copper alloy microelectrodes for use in voltammetric field apparatus. Anal Bioanal Chem 384, 1567–1577 (2006). https://doi.org/10.1007/s00216-006-0334-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0334-4

Keywords

Navigation