Skip to main content
Log in

Analysis of (O-acyl) alpha- and omega-hydroxy fatty acids in vernix caseosa by high-performance liquid chromatography-Orbitrap mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fatty acid esters of long-chain hydroxy fatty acids or (O-acyl)-hydroxy fatty acids (OAHFAs) were identified for the first time in vernix caseosa and characterized using chromatography and mass spectrometry. OAHFAs were isolated from the total lipid extract by a two-step semipreparative TLC. The general structure of OAHFAs was established using high-resolution and tandem mass spectrometry of intact lipids and their transesterification and derivatization products. Two isomeric lipid classes were identified: O-acyl esters of ω-hydroxy fatty acids (ωOAHFA) and O-acyl esters of α-hydroxy fatty acids (αOAHFAs). To the best of our knowledge, αOAHFAs have never been detected in any biological sample before. Chromatographic separation and identification of OAHFAs species were achieved using non-aqueous reversed-phase HPLC coupled to electrospray ionization hybrid linear ion trap-Orbitrap mass spectrometry. The lipid species were detected as deprotonated molecules, and their structures were elucidated using data-dependent fragmentation in the negative ion mode. More than 400 OAHFAs were identified in this way. The most abundant ωOAHFAs species were 28:0/ω-18:2, 29:0/ω-18:2, 30:0/ω-18:2, 32:0/ω-18:2, and 30:0/ω-18:3, while αOAHFAs comprised saturated species 21:0/α-24:0, 22:0/α-24:0, 23:0/α-24:0, 24:0/α-24:0, and 26:0/α-24:0. OAHFAs were estimated to account for approximately 0.04% of vernix caseosa lipids.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CID:

Collision-induced dissociation

ECN:

Equivalent carbon number

FAHFA:

Fatty acid esters of hydroxy fatty acid

FAME:

Fatty acid methyl ester

HFA:

Hydroxy fatty acid

HFAME:

Hydroxy fatty acid methyl ester

OAHFA:

(O-Acyl)-hydroxy fatty acid

RDBE:

Ring and double bond equivalent

References

  1. Tollin M, Bergsson G, Kai-Larsen Y, Lengqvist J, Sjövall J, Griffiths W, et al. Vernix caseosa as a multi-component defence system based on polypeptides, lipids and their interactions. Cell Mol Life Sci. 2005;62(19):2390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tollin M, Jägerbrink T, Haraldsson A, Agerberth B, Jörnvall H. Proteome analysis of vernix caseosa. Pediatr Res. 2006;60(4):430–4.

    Article  CAS  PubMed  Google Scholar 

  3. Haubrich KA. Role of vernix caseosa in the neonate: potential application in the adult population. AACN Clin Issues. 2003;14(4):457–64.

    Article  PubMed  Google Scholar 

  4. Vissche MO, Narendran V, Pickens WL, LaRuffa AA, Meinzen-Derr J, Allen K, et al. Vernix caseosa in neonatal adaptation. J Perinatol. 200525(7):440–6.

  5. Moraille R, Pickens WL, Visscher MO, Hoath SB. A novel role for vernix caseosa as a skin cleanser. Biol Neonate. 2005;87(1):8.

    Article  CAS  PubMed  Google Scholar 

  6. Singh G, Archana G. Unraveling the mystery of vernix caseosa. Indian J Dermatol. 2008;53(2):54–60.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoath SB, Pickens WL, Visscher MO. The biology of vernix caseosa. Int J Cosmet Sci. 2006;28:319–33.

    Article  CAS  PubMed  Google Scholar 

  8. Wang DH, Ran-Ressler R, St Leger J, Nilson E, Palmer L, Collins R, et al. Sea lions develop human-like vernix caseosa delivering branched fats and squalene to the GI tract. Sci Rep. 2018;8(1):7478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmid R. Notizen zur kenntnis der vernix caseosa. Arch Gynakol. 1939;168:445–50.

    Article  Google Scholar 

  10. Kaerkkaeinen J, Nikkari T, Ruponen S, Haahti E. Lipids of vernix caseosa. J Invest Dermatol. 1965;44:333–8.

    Article  CAS  PubMed  Google Scholar 

  11. Fu HC, Nicolaides N. The structure of alkane diols of diesters in vernix caseosa lipids. Lipids. 1969;4:170–5.

    Article  CAS  PubMed  Google Scholar 

  12. Ansari MN, Fu HC, Nicolaides N. Fatty acids of the alkane diol diesters of vernix caseosa. Lipids. 1970;5:279–82.

    Article  CAS  PubMed  Google Scholar 

  13. Šubčíková L, Hoskovec M, Vrkoslav V, Čmelíková T, Háková E, Míková R, et al. Analysis of 1,2-diol diesters in vernix caseosa by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A. 2015;1378:8–18.

    Article  CAS  PubMed  Google Scholar 

  14. Kalužíková A, Vrkoslav V, Harazim E, Hoskovec M, Plavka R, Buděšínský M, et al. Cholesteryl esters of ω-(O-acyl)0hydroxy fatty acids in vernix caseosa. J Lipid Res. 2017;58(8):1579–90.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rissmann R, Groenink HWW, Weerheim AM, Hoath SB, Ponec M, Bouwstra JA. New insights into ultrastructure, lipid composition and organization of vernix caseosa. J Invest Dermatol. 2006;126(8):1823–33.

    Article  CAS  PubMed  Google Scholar 

  16. Nicolaides N. Skin lipids: their biochemical uniqueness. Science. 1974;186(4158):19–26.

    Article  CAS  PubMed  Google Scholar 

  17. Jenske R, Vetter W. Concentrations of medium-chain 2- and 3-hydroxy fatty acids in foodstuffs. Food Chem. 2009;114:1122–9.

    Article  CAS  Google Scholar 

  18. Hirabayashi T, Anjo T, Kaneko A, Senoo Y, Shibata A, Takama H, et al. Murakami M PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat Commun. 2017;8:14609.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Butovich IA, Wojtowitz JC, Molai M. Human tear film and meibum. Very long chain wax esters and (O-acyl)-omega-hydroxy fatty acids of meibum. J. Lipid Res. 2009;50(12):2471–85.

    Article  CAS  Google Scholar 

  20. Chen J, Green-Church KB, Nichols KK. Shotgun lipidomic analysis of human Meibomian gland secretions with electrospray ionization mass spectrometry. Invest Ophthalmol Vis Sci. 2010;51:6220–31.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Butovich IA. Lipidomics of human Meibomian gland secretions: chemistry, biophysics, and physiological role of Meibomian lipids. Prog Lipid Res. 2011;50:278–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wood PL, Scoggin K, Ball BA, Troedsson MH, Squires EL. Lipidomics of equine sperm and seminal plasma: identification of amphiphilic (O-acyl)-ω-hydroxy fatty acids. Theriogenology. 2016;86(5):1212–21.

    Article  CAS  PubMed  Google Scholar 

  23. Wood PL, Ball BA, Scoggin K, Troedsson MH, Squires EL. Lipidomics of equine amniotic fluid: identification of amphiphilic (O-acyl) ω-hydroxy fatty acids. Theriogenology. 2018;105:120–5.

    Article  CAS  PubMed  Google Scholar 

  24. Opalka L, Kovacik A, Maixner J, Vavrova K. Omega-O-acyl ceramides in skin lipid membranes: effects of concentration, sphingoid base, and model complexity on microstructure and permeability. Langmuir. 2016;32(48):12894–904.

    Article  CAS  PubMed  Google Scholar 

  25. Oku H, Mimura K, Tokitsu Y, Onaga K, Iwasaki H, Chinen I. Biased distribution of the branched-chain fatty acids in ceramides of vernix caseosa. Lipids. 2000;35:373–81.

    Article  CAS  PubMed  Google Scholar 

  26. Schuett BS, Millar TJ. An investigation of the likely role of (O-acyl)- ω -hydroxy fatty acids in meibomian lipid films using (O-acyl) ω-hydroxy palmitic acid as a model. Exp Eye Res. 2013;115:57–64.

    Article  CAS  PubMed  Google Scholar 

  27. Lam SM, Tong L, Yong SS, Li B, Chaurasia SS, Shui G, et al. Meibum lipid composition in Asians with dry eye disease. PLoS One. 2011;6(10):e24339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yore MM, Syed I, Noraes-Vieira PM, Zhang T, Herman MA, Homan EA, et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell. 2014;159(2):318–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuda O, Brezinova M, Rombaldova M, Slavikova B, Posta M, Beier P, et al. Docosahexaenoic acid-derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties. Diabetes. 2016;65(9):2580–90.

    Article  CAS  PubMed  Google Scholar 

  30. Tan D, Ertunc ME, Konduri S, Zhang J, Pinto MA, Chu Q, et al. Discovery of FAHFA-containing triacylglycerols and their metabolic regulation. J Am Chem Soc. 2019;141(22):8798–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stransky K, Jursik T. Simple quantitative transesterification of lipids, 1. Introduction. Fett-Lipid. 1996;98(2):65–71.

    Article  CAS  Google Scholar 

  32. Presser A, Hufner A. Trimethylsilyldiazomethane – a mild and efficient reagent for methylation of carboxylic acids and alcohols in natural products. Monatsh Chem. 2004;135(8):1015–22.

    Article  CAS  Google Scholar 

  33. Carvalho F, Gauthie LT, Hodgson DJ, Dawson B, Buist PH. Quantitation of hydroxylated byproduct formation in a Saccharomyces cerevisiae Δ9 desaturating system. Org Biomol Chem. 2005;3:3979–83.

    Article  CAS  PubMed  Google Scholar 

  34. Mori N, Fukano Y, Arita R, Shirakawa R, Kawazu K, Nakamura M, et al. Rapid identification of fatty acids and (O-acyl)-ω-hydroxy fatty acids in human meibum by liquid chromatography/high-resolution mass spectrometry. J Chromatogr A. 2014;1347:129–36.

    Article  CAS  PubMed  Google Scholar 

  35. Marshall DL, Saville JT, Maccarone AT, Ailuri R, Kelso MJ, Mitchell TW, et al. Determination of ester position in isomeric (O-acyl)-hydroxy fatty acids by ion trap mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(21):2351–9.

    Article  CAS  PubMed  Google Scholar 

  36. Stránsky K, Jursík T, Vítek A. Standard equivalent chain length values of monoenic and polyenic (methylene interrupted) fatty acids. J High Resolut Chromatogr. 1997;20(3):143–58.

    Article  Google Scholar 

  37. Nicolaides N, Soukup VG, Ruth EC. Mass spectrometric fragmentation patterns of the acetoxy and trimethylsilyl derivatives of all the positional isomers of the methyl hydroxypalmitates. Biol Mass Spectrom. 1983;10:441–9.

    Article  CAS  Google Scholar 

  38. Christie WW. Mass spectrometry of methyl esters: hydroxy fatty acids - trimethylsilyl derivatives. 2016. http://www.lipidhome.co.uk/ms/methesters/me-hydroxy-2/index.htm. Accessed 5 Jan 2017.

  39. Bandu ML, Grubbs T, Kater M, Desaire H. Collision induced dissociation of alpha hydroxy acids: evidence of an ion-neutral complex intermediate. Int J Mass Spectrom. 2006;251:40–6.

    Article  CAS  Google Scholar 

  40. Bialecki JB, Axe FU, Attygalle AB. Hydroxycarbonyl anion (m/z 45), a diagnostic marker for α-hydroxy carboxylic acids. J Mass Spectrom. 2009;44:252–9.

    Article  CAS  PubMed  Google Scholar 

  41. Hauff S, Vetter W. Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry. J Chromatogr A. 2010;1217(52):8270–8.

    Article  CAS  PubMed  Google Scholar 

  42. Vrkoslav V, Urbanová K, Cvačka J. Analysis of wax ester molecular species by high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A. 2010;1217:4184–94.

    Article  CAS  PubMed  Google Scholar 

  43. Plattner RD, Spencer GF, Kleiman R. Triglyceride separation by reverse phase high performance liquid chromatography. J Am Oil Chem Soc. 1977;54(11):511–5.

    Article  CAS  Google Scholar 

  44. Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J Lipid Res. 2001;42:663–72.

    PubMed  Google Scholar 

  45. Yang K, Han X. Accurate quantification of lipid species by electrospray ionization mass spectrometry – meets a key challenge in lipidomics. Metabolites. 2011;1(1):21–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown SHJ, Kunnen CME, Duchoslav E, Dolla NK, Kelso MJ, Papas EB, et al. A comparison of patient matched meibum and tear lipidomes. Invest Ophthalmol Vis Sci. 2013;54:7417–24.

    Article  CAS  PubMed  Google Scholar 

  47. Kendall AC, Kiezel-Tsugunova M, Brownbridge LC, Harwood JL, Nicolaou A. Lipid functions in skin: differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model. Biochim Biophys Acta Biomembr. 2017;859:1679–89.

    Article  CAS  Google Scholar 

  48. Uchida Y, Holleran WM. Omega-o-acylceramide, a lipid essential for mammalian survival. J Dermatol Sci. 2008;51(2):77–87.

    Article  CAS  PubMed  Google Scholar 

  49. Di Nardo A, Wertz P, Giannetti A, Seidenari S. Ceramide and cholesterol composition of the skin patients with atopic dermatitis. Acta Derm Venereol. 1998;78(1):27–30.

    Article  PubMed  Google Scholar 

  50. Paige DG, Morse-Fisher N, Harper JI. Quantification of stratum corneum ceramides and lipid envelope ceramides in the hereditary ichthyoses. Br J Dermatol. 1994;131(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  51. Butovich IA, Borowiak AM, Eule JC. Comparative HPLC-MS analysis of canine and human Meibomian lipidomes: many similarities, a few differences. Sci Rep. 2011;1:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nicolaides N, Fu HC, Ansari MN. Diester waxes in surface lipids of animal skin. Lipids. 1970;5(3):299–307.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of Charles University in Prague (Project No. 1182216), the Charles University in Prague (Project SVV260440), and from European Regional Development Fund; OP RDE; Project: “Chemical biology for drugging undruggable targets (ChemBioDrug)” (No. CZ.02.1.01/0.0/0.0/16_019/0000729).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Cvačka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of the General University Hospital in Prague (910/09 S-IV).

Additional information

Published in the topical collection Current Progress in Lipidomics with guest editors Michal Holčapek, Gerhard Liebisch, and Kim Ekroos.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 925 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavrušová, A., Vrkoslav, V., Plavka, R. et al. Analysis of (O-acyl) alpha- and omega-hydroxy fatty acids in vernix caseosa by high-performance liquid chromatography-Orbitrap mass spectrometry. Anal Bioanal Chem 412, 2291–2302 (2020). https://doi.org/10.1007/s00216-019-02348-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02348-2

Keywords

Navigation