Skip to main content
Log in

Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A portable reconfigurable platform for copper (Cu(II)) determination based on luminescent carbon dot (Cdots) quenching is described. The electronic setup consists of a light-emitting diode (LED) as the carbon dot optical exciter and a photodiode as a light-to-current converter integrated in the same instrument. Moreover, the overall analog conditioning is simply performed with one integrated solution, a field-programmable analog array (FPAA), which makes it possible to reconfigure the filter and gain stages in real time. This feature provides adaptability to use the platform as an analytical probe for carbon dots coming from different batches with some variations in luminescence characteristics. The calibration functions obtained that fit a modified Stern-Volmer equation were obtained using luminescence signals from Cdots quenching by Cu(II). The analytical applicability of the reconfigurable portable instrument for Cu(II) using Cdots has been successfully demonstrated in tap water analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mhamma D, Ramadan W, Rana A, Rode C, Hannuyer B, Orgale S. From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation. Green Chem. 2011;13:1990.

    Article  Google Scholar 

  2. Ming J, Liu R, Liang G, Yu Y, Zhao F. Knitting an oxygenated network-coat on carbon nanotubes from biomass and their applications in catalysis. J Mater Chem. 2011;21:10929.

    Article  CAS  Google Scholar 

  3. Esteves da Silva JCG, Gonçalves HMR. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal Chem. 2011;30:1327–36.

    Article  CAS  Google Scholar 

  4. Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44:362–81.

    Article  CAS  Google Scholar 

  5. Li H, Kang Z, Liu Y, Lee S. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22:24230–53.

    Article  CAS  Google Scholar 

  6. Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun. 2012;48:3686–99.

    Article  CAS  Google Scholar 

  7. Qu K, Wang J, Ren J, Xi Q. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem Eur J. 2013;19:7243–9.

    Article  CAS  Google Scholar 

  8. US EPA, Federal Register 44:69464 ed., EPA, 1979.

  9. Uauy R, Olivares M, Gonzalez M. Essentiality of copper in humans. Am J Clin Nutr. 1998;67:952S.

    CAS  Google Scholar 

  10. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004;3:205.

    Article  CAS  Google Scholar 

  11. Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric ion. Chem Rev. 2008;108:3443–80.

    Article  CAS  Google Scholar 

  12. Tobiasz A, Walas S. Solid-phase-extraction procedures for atomic spectrometry determination of copper. TrAC Trends Anal Chem. 2014;62:106–22.

    Article  CAS  Google Scholar 

  13. Das D, Dutta M, Cervera ML, de la Guardia M. Recent advances in on-line solid-phase pre-concentration for inductively-coupled plasma techniques for determination of mineral elements. TrAC Trends Anal Chem. 2012;33:35–45.

    Article  CAS  Google Scholar 

  14. Guo Y, Zhang L, Zhang S, Yang Y, Chen X, Zhang M. Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens Bioelectron. 2015;63:61–71.

    Article  CAS  Google Scholar 

  15. Kargbo O, Jin Y, Ding SN. Recent advances in luminescent carbon dots. Curr Anal Chem. 2015;11:4–21.

    Article  CAS  Google Scholar 

  16. Kong D, Yan F, Shi D, Ye Q, Han Z, Chen L, et al. Carbon dots: synthetic methods and applications as fluorescent probes for the detection of metal ions, inorganic anions and organic molecules. J Iran Chem Soc. 2015;12:1841–57.

    Article  CAS  Google Scholar 

  17. Salinas-Castillo A, Ariza-Avidad M, Pritz C, Camprubí-Robles M, Fernández B, Ruedas-Rama MJ, et al. Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun. 2013;49:1103–5.

    Article  CAS  Google Scholar 

  18. Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem. 2012;84:6220–4.

    Article  CAS  Google Scholar 

  19. Dong Y, Wang R, Li H, Shao J, Chi Y, Lin X, et al. Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon. 2012;50:2810–5.

    Article  CAS  Google Scholar 

  20. Yang H, Wei X, Liang X, Su M, Lu X. A SoC and LED based reconfigurable subminiature spectrometer for hand-held measurement applications. Measurement. 2008;41:44–54.

    Article  Google Scholar 

  21. Hepel M, Stobiecka. Microsensor array for determination of biomarkers of oxidative stress. ECS Trans. 2011;35:125–34.

    Article  CAS  Google Scholar 

  22. Morales DP, García A, Martínez Olmos A, Banqueri J, Palma AJ. Digital and analog reconfiguration techniques for rapid smart sensor system prototyping. Sens Lett. 2009;7:1113–8.

    Article  Google Scholar 

  23. Morales DP, López-Ruiz N, Castillo E, García A, Martínez-Olmos A. Adaptative ECT system based on reconfigurable electronics. Measurement. 2015;74:238–45.

    Article  Google Scholar 

  24. Rabah H, Poussier S, Weber S. Toward a generic on chip conditioning system for strain gage sensors. Measurement. 2006;39:320–7.

    Article  Google Scholar 

  25. Morales DP, García A, Castillo E, Carvajal MA, Parrilla L, Palma AJ. An application of reconfigurable technologies for non-invasive fetal heart rate extraction. Med Eng Phys. 2013;35:1005–14.

    Article  CAS  Google Scholar 

  26. Morales DP, García A, Castillo E, Carvajal MA, Banqueri J, Palma AJ. Flexible ECG acquisition system based on analog and digital reconfigurable devices. Sensors Actuators A Phys. 2011;165:261–70.

    Article  CAS  Google Scholar 

  27. Anadigm. AN221E04 dynamically reconfigurable FPAA with enhanced I/O; 2010. [Online] http://www.anadigm.com/doc/DS030100-U006.pdf.

  28. Carvajal MA, Ballesta-Claver J, Morales DP, Palma AJ, Valencia-Mirón MC, Capitán-Vallvey LF. Portable reconfigurable instrument for analytical determinations using disposable electrochemiluminescent screen-printed electrodes. Sensors Actuators B Chem. 2012;169:46–53.

    Article  CAS  Google Scholar 

  29. PSoC 5LP: CY8C58LP Family Datasheet. Cypress Perform. Document Number: 001-84932 Rev. G. December 8, 2014. http://www.cypress.com/?docID=49437.

  30. Dong Y, Li WG, Chen C, Chi Y, Chen G. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective, sensitive and rapid detection of coppers ions. Anal Chem. 2012;84:6220–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by projects from the Spanish MINECO (CTQ2013-44545-R), Junta de Andalucía (P10-FQM-5974), and the Fortalecimiento de Grupos and Reincorporación de Doctores programs. These projects were partially supported by ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Salinas-Castillo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salinas-Castillo, A., Morales, D.P., Lapresta-Fernández, A. et al. Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots. Anal Bioanal Chem 408, 3013–3020 (2016). https://doi.org/10.1007/s00216-016-9349-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9349-7

Keywords

Navigation