Skip to main content
Log in

Determination of nitro-polycyclic aromatic hydrocarbons in atmospheric aerosols using HPLC fluorescence with a post-column derivatisation technique

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The objective of this study was to develop an efficient and sensitive analytical protocol for the determination of nitrated polycyclic aromatic hydrocarbons (NPAHs) in aerosol samples. The separation of 16 NPAH (mono-and dinitro-PAH) was achieved by reversed-phase high-performance liquid chromatography (HPLC) followed by =.28w?>on-line reduction of the NPAHs to their corresponding amino polycyclic aromatic hydrocarbons (APAHs) and quantification by fluorescence detection. The main factors affecting the on-line reduction efficiency, such as the flow rate, the temperature, the position and packing of the reduction column were evaluated and optimised. The optimal conditions obtained were: packing of the reduction column with Pt-Al2O3; a reduction column oven temperature of 90 °C; a flow rate of 0.8 mL min−1. The resulting detection limits of the method ranged between 0.06 (2 NN) and 1.25 μg L−1 (1.8 DNN), with an uncertainty of about 6%. The lifetime of the reduction column was identical to that of a typical analytical column. This analytical method was applied to particulate matter samples collected during December 2005 and August 2006 in Strasbourg (Alsace, eastern France). The NPAH concentrations observed for this urban site showed that the compounds are more abundant during winter (average of 534 pg m−3) than during summer (average of 118 pg m−3). 1-Nitropyrene was the predominant NPAH species, independent of season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielson T (1984) Environ Sci Technol 18:157–163

    Article  Google Scholar 

  2. Atkinson R, Ashmann S (1994) Int J Chem Kinet 26:929–932

    Article  CAS  Google Scholar 

  3. Bamford HA, Bezabeh DZ, Schantz MM, Wise SA, Baker JE (2003) Chemosphere 50:575–587

    Article  CAS  Google Scholar 

  4. Jinhui X, Lee FSC (2000) Anal Chim Acta 416:111–115

    Google Scholar 

  5. Niederer M (1998) Environ Sci Pollut Res 5:209–216

    Article  CAS  Google Scholar 

  6. Dusek B, Hajslova J, Kocourek V (2002) J Chromatogr A 982:127–143

    Article  CAS  Google Scholar 

  7. Bezabeh DZ, Bamford HA, Schantz MM, Wise SA (2003) Anal Bioanal Chem 405:401–408

    Google Scholar 

  8. Siegmund B, Weiss R, Pfannhauser W (2003) Anal Bioanal Chem 405:175–181

    Google Scholar 

  9. Paschke T, Hawthorne SB, Miller DJ, Wenclawiak B (1992) J Chromatogr A 609:333–340

    Article  CAS  Google Scholar 

  10. Schauer C, Niessner R, Pöschl U (2004) Anal Bioanal Chem 378:725–736

    Article  CAS  Google Scholar 

  11. Mac Crehan WA, May WE, Yang SD (1988) Anal Chem 60:194–199

    Google Scholar 

  12. Leoz-Garziandia E (2000) Report DRC/AIRE–00 23 448–ELe–no. 570. INERIS, Verneuil-en-Halatte, France

  13. Tejada SB, Zweidinger RB, Sigsby JE (1986) Anal Chem 58:1827–1834

    Google Scholar 

  14. Bamford HA, Baker JE (2003) Atmos Environ 37:2077–2091

    Article  CAS  Google Scholar 

  15. Harner T, Bidleman TF (1998) Environ Sci Technol 32:1494–1502

    Article  CAS  Google Scholar 

  16. Reisen F, Arey J (2005) Environ Sci Technol 39:64–73

    Article  CAS  Google Scholar 

  17. Marino F, Cecinato A, Siskos PA (2000) Chemosphere 40:533–537

    Article  CAS  Google Scholar 

  18. Castells P, Santos FJ, Galceran MT (2003) J Chromatogr A 1010:141–151

    Article  CAS  Google Scholar 

  19. Del Rosario Sienra M, Rosazza NG (2006) Atmos Res 81:265–276

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Alain Kiennemann for his help with the design of the Pt-Al2O3 reduction column and Dr Loïc Charbonnière for permitting his spectrofluorimeter to be used for the acquisition of NPAH fluorescence data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Millet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delhomme, O., Herckes, P. & Millet, M. Determination of nitro-polycyclic aromatic hydrocarbons in atmospheric aerosols using HPLC fluorescence with a post-column derivatisation technique. Anal Bioanal Chem 389, 1953–1959 (2007). https://doi.org/10.1007/s00216-007-1562-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1562-y

Keywords

Navigation