Skip to main content
Log in

Development of a new parallelized, optical biosensor platform for label-free detection of autoimmunity-related antibodies

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Autoimmune diseases are characterized by the presence of autoantibodies in serum of affected patients. The heterogeneity of autoimmune relevant antigens creates a variety of different antibodies, which requires a simultaneous detection mode. For this reason, we developed a tool for parallelized, label-free, optical detection that accomplishes the characterization of multiple antigen–antibody interactions within a single measurement on a timescale of minutes. Using 11-aminoundecyltrimethoxysilane, we were able to immobilize proteinogenic antigens as well as an amino-functionalized cardiolipin on a glass surface. Assay conditions were optimized for serum measurements with a single spot antigen chip on a single spot 1-λ detection system. Minimized background signal allows a differentiation between patients and healthy controls with a good sensitivity and specificity. Applying polarized imaging reflectometric interference spectroscopy, we evaluated samples from three APS patients and three control subjects for this proof-of-principle and already obtained good results for β2-glycoprotein I and cardiolipin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

aa:

Amino acids

anti-CL:

Cardiolipin antibody

anti-PL:

Phospholipid antibody

anti-β2-GPI:

β2-GPI antibodies

anti-BSA:

Bovine serum albumin antibodies

anti-PT:

Prothrombin antibody

AMD:

Aminodextrane

APS:

Antiphospholipid syndrome

BSA:

Bovine serum albumin

CCD:

Charge-coupled device

CL:

Cardiolipin

ELISA:

Enzyme-linked immunosorbent assay

IgG:

Immunglobulin G

IgM:

Immunglobulin M

LED:

Light-emitting diode

LA:

Lupus anticoagulant

PBS:

Phosphate-buffered saline

PEG:

Polyethylene glycol

pi-RIfS:

Polarized imaging reflectometric interference spectroscopy

PL:

Phospholipid

PS:

Phosphatidyl serine

PT:

Prothrombin

RIfS:

Reflectometric interference spectroscopy

RT:

Room temperature

SD:

Standard deviation

11-AUTMS:

11-Aminoundecyltrimethoxysilane

β2-GPI:

β2-Glycoprotein I

References

  1. Reynolds RC, Ananthan S, Faaleolea E et al (2012) High throughput screening of a library based on kinase inhibitor scaffolds against Mycobacterium tuberculosis H37Rv. Tuberculosis 92:72–83. doi:10.1016/j.tube.2011.05.005

    Article  CAS  Google Scholar 

  2. Lin J, Bardina L, Shreffler WG et al (2009) Development of a novel peptide microarray for large-scale epitope mapping of food allergens. J Allergy Clin Immunol 124:315–322. doi:10.1016/j.jaci.2009.05.024

    Article  CAS  Google Scholar 

  3. Fernández L, Bleda MJ, Gómara MJ, Haro I (2013) Design and application of GB virus C (GBV-C) peptide microarrays for diagnosis of GBV-C/HIV-1 co-infection. Anal Bioanal Chem 405:3973–3982. doi:10.1007/s00216-012-6585-3

    Article  Google Scholar 

  4. Brecht A, Gauglitz G, Nahm W (1992) Interferometric measurements used in chemical and biochemical sensors. Analusis 20:135–140

    CAS  Google Scholar 

  5. Gauglitz G (2010) Direct optical detection in bioanalysis: an update. Anal Bioanal Chem 398:2363–2372

    Article  CAS  Google Scholar 

  6. Frank R, Möhrle B, Fröhlich D, Gauglitz G (2005) A transducer-independent optical sensor system for the detection of biochemical binding reactions. 49:59930A/1–59930A/11. doi: doi:10.1117/12.633881

  7. Fechner P, Pröll F, Albrecht C, Gauglitz G (2011) Kinetic analysis of the estrogen receptor alpha using RIfS. Anal Bioanal Chem 400:729–735

    Article  CAS  Google Scholar 

  8. Piliarik M, Bocková M, Homola J (2010) Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosens Bioelectron 26:1656–1661. doi:10.1016/j.bios.2010.08.063

    Article  CAS  Google Scholar 

  9. Leidner L, Gauglitz G (2011) Development of a modified grating coupler in application to geosciences. Anal Bioanal Chem 400:2783–2791. doi:10.1007/s00216-011-5035-y

    Article  CAS  Google Scholar 

  10. Cush R, Cronin JM, Stewart WJ et al (1993) The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. Part I: principle of operation and associated instrumentation. Biosens Bioelectron 8:347–354. doi:10.1016/0956-5663(93)80073-X

    Article  CAS  Google Scholar 

  11. Galli M, Barbui T, Comfurius P et al (1990) Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet 335:1544–1547

    Article  CAS  Google Scholar 

  12. Miyakis S, Lockshin MD, Atsumi T et al (2006) International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 4:295–306. doi:10.1111/j.1538-7836.2006.01753.x

    Article  CAS  Google Scholar 

  13. Ghirardello A, Bizzaro N, Zampieri S et al (2007) Biological and clinical relevance of anti-prothrombin antibodies. Ann N Y Acad Sci 1109:503–510. doi:10.1196/annals.1398.056

    Article  Google Scholar 

  14. Wang H, Chiang A (2004) Cloning and characterization of the human β2 -glycoprotein I (β2-GPI) gene promoter: roles of the atypical TATA box and hepatic nuclear factor-1α in regulating β2 -GPI promoter activity. Biochem J 463:455–463

    Article  Google Scholar 

  15. Agar C, van Os GMA, Morgelin M et al (2010) {beta}2-Glycoprotein I can exist in 2 conformations: implications for our understanding of the antiphospholipid syndrome. Blood 116:1336–1343. doi:10.1182/blood-2009-12-260976

    Article  CAS  Google Scholar 

  16. De Laat B, Derksen RHWM, van Lummel M et al (2006) Pathogenic anti-beta2-glycoprotein I antibodies recognize domain I of beta2-glycoprotein I only after a conformational change. Blood 107:1916–1924. doi:10.1182/blood-2005-05-1943

    Article  Google Scholar 

  17. De Groot PG, Meijers JCM (2011) β(2)-Glycoprotein I: evolution, structure and function. J Thromb Haemost 9:1275–1284. doi:10.1111/j.1538-7836.2011.04327.x

    Article  Google Scholar 

  18. Iverson GM, Victoria EJ, Marquis DM (1998) Anti-beta2 glycoprotein I (beta2GPI) autoantibodies recognize an epitope on the first domain of beta2GPI. Proc Natl Acad Sci U S A 95:15542–15546

    Article  CAS  Google Scholar 

  19. Mehne J, Markovic G, Pröll F et al (2008) Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings optimised for biosensor applications. Anal Bioanal Chem 391:1783–1791

    Article  CAS  Google Scholar 

  20. Johns MK, Yin M-X, Conway SJ et al (2009) Synthesis and biological evaluation of a novel cardiolipin affinity matrix. Org Biomol Chem 7:3691–3697. doi:10.1039/b909306k

    Article  CAS  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  22. Ewald M, Le Blanc AF, Gauglitz G, Proll G (2013) A robust sensor platform for label-free detection of anti-Salmonella antibodies using undiluted animal sera. Anal Bioanal Chem 405:6461–6469. doi:10.1007/s00216-013-7040-9

    Article  CAS  Google Scholar 

  23. Kessler SW (1975) rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody–antigen complexes with protein A. J Immunol 115:1617–1624

    CAS  Google Scholar 

  24. Richman DD, Cleveland PH, Oxman MN, Johnson KM (1982) The binding of staphylococcal protein A by the sera of different animal species. J Immunol 128:2300–2305

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Dr. Peter Fechner from Biametrics GmbH for the design and fabrication of the PDMS flow cell and for providing it to us. We thank the Deutsche Forschungsgemeinschaft (DFG) for funding this project (project numbers PR1192/2-1 and LU 520/5-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Bleher.

Additional information

Published in the topical collection Multiplex Platforms in Diagnostics and Bioanalytics with guest editors Günter Peine and Günther Proll.

Oliver Bleher and Aline Schindler contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1564 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleher, O., Schindler, A., Yin, MX. et al. Development of a new parallelized, optical biosensor platform for label-free detection of autoimmunity-related antibodies. Anal Bioanal Chem 406, 3305–3314 (2014). https://doi.org/10.1007/s00216-013-7504-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7504-y

Keywords

Navigation