Skip to main content
Log in

Ionic liquids as gas chromatographic stationary phases: how can they change food and natural product analyses?

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The volatile fraction of natural products often consists of complex mixtures of isomeric and/or homologous components with similar structural and physical characteristics (e.g. mono- and sesquiterpenoids) that are not easy to separate simultaneously with conventional GC stationary phases, even when used with multidimensional systems. The introduction of ionic liquids (ILs) as stationary phases has opened up new perspectives in this field as their unique solvation properties result in uncommon selectivity, which is completely different to that of classic polydimethylsiloxane (PDMS)- and polyethyleneglycol (PEG)-based columns. Because of their peculiar selectivity and high inertness, IL-based columns have already found several applications in the natural product field in mono- and multidimensional GC and preparative GC, leading to the exhaustive analysis of complex samples (including aqueous solutions), and the separation of challenging pair(s) of compounds. This article provides an overview of how IL-based columns can be exploited in the fields of food and natural products, explores the wide range of applications that have already been developed and highlights the main features of these promising stationary phases, which are expected to be further extended in the near future, in particular, for routine use.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bicchi C, Brunelli C, Galli M, Sironi A. Conventional inner diameter short capillary columns: an approach to speeding up gas chromatographic analysis of medium complexity samples. J Chromatogr A. 2001;931(1):129–40. https://doi.org/10.1016/S0021-9673(01)01169-4.

    Article  CAS  PubMed  Google Scholar 

  2. Trujillo-Rodríguez MJ, Nan H, Varona M, Emaus MN, Souza ID, Anderson JL. Advances of ionic liquids in analytical chemistry. Anal Chem. 2019;91(1):505–31. https://doi.org/10.1021/acs.analchem.8b04710.

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez-Sanchez S, Galindo-Iranzo P, Soria AC, Sanz ML, Quintanilla-Lopez JE, Lebron-Aguilar R. Characterization by the solvation parameter model of the retention properties of commercial ionic liquid columns for gas chromatography. J Chromatogr A. 2014;1326:96–102. https://doi.org/10.1016/j.chroma.2013.12.020.

    Article  CAS  PubMed  Google Scholar 

  4. Fanali C, Micalizzi G, Dugo P, Mondello L. Ionic liquids as stationary phases for fatty acid analysis by gas chromatography. Analyst. 2017;142(24):4601–12. https://doi.org/10.1039/c7an01338h.

    Article  CAS  PubMed  Google Scholar 

  5. Qi ML, Armstrong DW. Dicationic ionic liquid stationary phase for GC-MS analysis of volatile compounds in herbal plants. Anal Bioanal Chem. 2007;388(4):889–99. https://doi.org/10.1007/s00216-007-1290-3.

    Article  CAS  PubMed  Google Scholar 

  6. Payagala T, Zhang Y, Wanigasekara E, Huang K, Breitbach ZS, Sharma PS, et al. Trigonal tricationic ionic liquids: a generation of gas chromatographic stationary phases. Anal Chem. 2009;81(1):160–73. https://doi.org/10.1021/Ac8016949.

    Article  CAS  PubMed  Google Scholar 

  7. Ragonese C, Sciarrone D, Tranchida PQ, Dugo P, Dugo G, Mondello L. Evaluation of a medium-polarity ionic liquid stationary phase in the analysis of flavor and fragrance compounds. Anal Chem. 2011;83(20):7947–54. https://doi.org/10.1021/ac202012u.

    Article  CAS  PubMed  Google Scholar 

  8. García Pinto C, Pérez Antón A, Pérez Pavón JL, Moreno Cordero B. Coupling of microextraction by packed sorbents with gas chromatography with ionic liquid stationary phases for the determination of haloanisoles in wines. J Chromatogr A. 2012;1260:200–5. https://doi.org/10.1016/j.chroma.2012.08.078.

    Article  CAS  PubMed  Google Scholar 

  9. Amaral MSS, Marriott PJ, Bizzo HR, Rezende CM. Ionic liquid capillary columns for analysis of multi-component volatiles by gas chromatography-mass spectrometry: performance, selectivity, activity and retention indices. Anal Bioanal Chem. 2018;410(19):4615–32. https://doi.org/10.1007/s00216-017-0718-7.

    Article  CAS  PubMed  Google Scholar 

  10. Cagliero C, Bicchi C, Cordero C, Liberto E, Sgorbini B, Rubiolo P. Room temperature ionic liquids: new GC stationary phases with a novel selectivity for flavor and fragrance analyses. J Chromatogr A. 2012;1268:130–8. https://doi.org/10.1016/j.chroma.2012.10.016.

    Article  CAS  PubMed  Google Scholar 

  11. Cagliero C, Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B. Analysis of essential oils and fragrances with a new generation of highly inert gas chromatographic columns coated with ionic liquids. J Chromatogr A. 2017;1495:64–75. https://doi.org/10.1016/j.chroma.2017.03.029.

    Article  CAS  PubMed  Google Scholar 

  12. Mazzucotelli M, Bicchi C, Marengo A, Rubiolo P, Galli S, Anderson JL, et al. Ionic liquids as stationary phases for gas chromatography-unusual selectivity of ionic liquids with a phosphonium cation and different anions in the flavor, fragrance and essential oil analyses. J Chromatogr A. 2019;1583:124–35. https://doi.org/10.1016/j.chroma.2018.11.032.

    Article  CAS  PubMed  Google Scholar 

  13. Breitbach ZS, Armstrong DW. Characterization of phosphonium ionic liquids through a linear solvation energy relationship and their use as GLC stationary phases. Anal Bioanal Chem. 2008;390(6):1605–17. https://doi.org/10.1007/s00216-008-1877-3.

    Article  CAS  PubMed  Google Scholar 

  14. Nolvachai Y, Kulsing C, Marriott PJ. Thermally sensitive behavior explanation for unusual orthogonality observed in comprehensive two-dimensional gas chromatography comprising a single ionic liquid stationary phase. Anal Chem. 2015;87(1):538–44. https://doi.org/10.1021/ac5030039.

    Article  Google Scholar 

  15. Purcaro G, Tranchida PQ, Ragonese C, Conte L, Dugo P, Dugo G, et al. Evaluation of a rapid-scanning quadrupole mass spectrometer in an apolar x ionic-liquid comprehensive two-dimensional gas chromatography system. Anal Chem. 2010;82(20):8583–90. https://doi.org/10.1021/ac101678r.

    Article  CAS  Google Scholar 

  16. Tranchida PQ, Franchina FA, Zoccali M, Pantò S, Sciarrone D, Dugo P, et al. Untargeted and targeted comprehensive two-dimensional GC analysis using a novel unified high-speed triple quadrupole mass spectrometer. J Chromatogr A. 2013;1278:153–9. https://doi.org/10.1016/j.chroma.2012.12.066.

    Article  CAS  PubMed  Google Scholar 

  17. Chin S-T, Eyres GT, Marriott PJ. Application of integrated comprehensive/multidimensional gas chromatography with mass spectrometry and olfactometry for aroma analysis in wine and coffee. Food Chem. 2015;185:355–61. https://doi.org/10.1016/j.foodchem.2015.04.003.

    Article  CAS  PubMed  Google Scholar 

  18. Wong YF, Uekane TM, Rezende CM, Bizzo HR, Marriott PJ. Qualitative analysis of Copaifera oleoresin using comprehensive two-dimensional gas chromatography and gas chromatography with classical and cold electron ionisation mass spectrometry. J Chromatogr A. 2016;1477:91–9. https://doi.org/10.1016/j.chroma.2016.11.038.

    Article  CAS  PubMed  Google Scholar 

  19. Wong YF, West RN, Chin ST, Marriott PJ. Evaluation of fast enantioselective multidimensional gas chromatography methods for monoterpenic compounds: authenticity control of Australian tea tree oil. J Chromatogr A. 2015;1406:307–15. https://doi.org/10.1016/j.chroma.2015.06.036.

    Article  CAS  PubMed  Google Scholar 

  20. Sciarrone D, Schepis A, Zoccali M, Donato P, Vita F, Creti D, et al. Multidimensional gas chromatography coupled to combustion-isotope ratio mass spectrometry/quadrupole MS with a low-bleed ionic liquid secondary column for the authentication of truffles and products containing truffle. Anal Chem. 2018;90(11):6610–7. https://doi.org/10.1021/acs.analchem.8b00386.

    Article  CAS  PubMed  Google Scholar 

  21. Yan D, Wong YF, Whittock SP, Koutoulis A, Shellie RA, Marriott PJ. Sequential hybrid three-dimensional gas chromatography with accurate mass spectrometry: a novel tool for high-resolution characterization of multicomponent samples. Anal Chem. 2018;90(8):5264–71. https://doi.org/10.1021/acs.analchem.8b00142.

    Article  CAS  PubMed  Google Scholar 

  22. Sciarrone D, Pantò S, Ragonese C, Tranchida PQ, Dugo P, Mondello L. Increasing the isolated quantities and purities of volatile compounds by using a triple deans-switch multidimensional preparative gas chromatographic system with an apolar-wax-ionic liquid stationary-phase combination. Anal Chem. 2012;84(16):7092–8. https://doi.org/10.1021/ac3013829.

    Article  CAS  PubMed  Google Scholar 

  23. Sciarrone D, Pantò S, Rotondo A, Tedone L, Tranchida PQ, Dugo P, et al. Rapid collection and identification of a novel component from Clausena lansium Skeels leaves by means of three-dimensional preparative gas chromatography and nuclear magnetic resonance/infrared/mass spectrometric analysis. Anal Chim Acta. 2013;785:119–25. https://doi.org/10.1016/j.aca.2013.04.069.

    Article  CAS  Google Scholar 

  24. Sciarrone D, Panto S, Tranchida PQ, Dugo P, Mondello L. Rapid isolation of high solute amounts using an online four-dimensional preparative system: normal phase-liquid chromatography coupled to methyl siloxane-ionic liquid-wax phase gas chromatography. Anal Chem. 2014;86(9):4295–301. https://doi.org/10.1021/ac404078u.

    Article  CAS  Google Scholar 

  25. Sciarrone D, Pantò S, Donato P, Mondello L. Improving the productivity of a multidimensional chromatographic preparative system by collecting pure chemicals after each of three chromatographic dimensions. J Chromatogr A. 2016;1475:80–5. https://doi.org/10.1016/j.chroma.2016.11.013.

    Article  CAS  PubMed  Google Scholar 

  26. Jayawardhana DA, Woods RM, Zhang Y, Wang CL, Armstrong DW. Rapid, efficient quantification of water in solvents and solvents in water using an ionic liquid-based GC column. Lc Gc N Am. 2012;30(2):142–58.

    CAS  Google Scholar 

  27. Weatherly CA, Woods RM, Armstrong DW. Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection. J Agric Food Chem. 2014;62(8):1832–8. https://doi.org/10.1021/jf4050167.

    Article  CAS  PubMed  Google Scholar 

  28. Frink LA, Armstrong DW. The utilisation of two detectors for the determination of water in honey using headspace gas chromatography. Food Chem. 2016;205:23–7. https://doi.org/10.1016/j.foodchem.2016.02.118.

    Article  CAS  PubMed  Google Scholar 

  29. Cagliero C, Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B. Ionic liquids as water-compatible GC stationary phases for the analysis of fragrances and essential oils. Anal Bioanal Chem. 2018;410(19):4657–68. https://doi.org/10.1007/s00216-018-0922-0.

    Article  CAS  PubMed  Google Scholar 

  30. Sgorbini B, Cagliero C, Acquadro S, Marengo A, Cordero C, Liberto E, et al. Evaluation of volatile bioactive secondary metabolites transfer from medicinal and aromatic plants to herbal teas: comparison of different methods for the determination of transfer rate and human intake. J Chromatogr A. 2019;1594:173–80. https://doi.org/10.1016/j.chroma.2019.02.012.

    Article  CAS  PubMed  Google Scholar 

  31. Mazzucotelli M, Minteguiaga MA, Sgorbini B, Sidisky L, Marengo A, Rubiolo P, Bicchi C, Cagliero C Ionic liquids as water-compatible GC stationary phases for the analysis of fragrances and essential oils: quantitative GC-MS analysis of officially-regulated allergens in perfumes. J Chromatogr A. 2020. https://doi.org/10.1016/j.chroma.2019.460567

    Article  Google Scholar 

  32. Odugbesi GA, Nan H, Soltani M, Davis JH, Anderson JL (2019) Ultra-high thermal stability perarylated ionic liquids as gas chromatographic stationary phases for the selective separation of polyaromatic hydrocarbons and polychlorinated biphenyls. J Chromatogr A 460466. https://doi.org/10.1016/j.chroma.2019.460466.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Cagliero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cagliero, C., Bicchi, C. Ionic liquids as gas chromatographic stationary phases: how can they change food and natural product analyses?. Anal Bioanal Chem 412, 17–25 (2020). https://doi.org/10.1007/s00216-019-02288-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02288-x

Keywords

Navigation