Skip to main content
Log in

Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and Raman spectra

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Partial least-squares (PLS) calibration models have been generated from a series of near-infrared (near-IR) and Raman spectra acquired separately from sixty different mixed solutions of glucose, lactate, and urea in aqueous phosphate buffer. Independent PLS models were prepared and compared for glucose, lactate, and urea. Near-IR and Raman spectral features differed substantially for these solutes, with Raman spectra enabling greater distinction with less spectral overlap than features in the near-IR spectra. Despite this, PLS models derived from near-IR spectra outperformed those from Raman spectra. Standard errors of prediction were 0.24, 0.11, and 0.14 mmol L−1 for glucose, lactate, and urea, respectively, from near-IR spectra and 0.40, 0.42, and 0.36 mmol L−1 for glucose, lactate, and urea, respectively, from Raman spectra. Differences between instrumental signal-to-noise ratios were responsible for the better performance of the near-IR models. The chemical basis of model selectivity was examined for each model by using a pure component selectivity analysis combined with analysis of the net analyte signal for each solute. This selectivity analysis showed that models based on either near-IR or Raman spectra had excellent selectivity for the targeted analyte. The net analyte signal analysis also revealed that analytical sensitivity was higher for the models generated from near-IR spectra. This is consistent with the lower standard errors of prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khalil OS (2004) Diabetes Technol Ther 6:660–697

    Article  CAS  Google Scholar 

  2. Arnold MA, Small GW (2005) Anal Chem 77:5429–5439

    Article  CAS  Google Scholar 

  3. Berger AJ, Koo TW, Itzkan I, Horowitz G, Feld MS (1999) Appl Opt 38:2916–2926

    Article  CAS  Google Scholar 

  4. Olesberg JT, Liu L, Van Zee V, Arnold MA (2006) Anal Chem 78:215–223

    Article  CAS  Google Scholar 

  5. Enejder AMK, Scecina TG, Oh J, Hunter M, Shih WC, Sasic S, Horowitz GL, Feld MS (2005) J Biomed Opt 10:031114

    Article  CAS  Google Scholar 

  6. Pelletier MJ (2003) Appl Spectrosc 57:20a–42a

    Article  CAS  Google Scholar 

  7. Motz JT, Gandhi SJ, Scepanovic OR, Haka AS, Kramer JR, Dasari RR, Feld MS (2005) J Biomed Opt 10:031113

    Article  CAS  Google Scholar 

  8. Khalil OS (1999) Clin Chem 45:165–177

    CAS  Google Scholar 

  9. Lipp ED (1992) Appl Spectrosc 27:385–408

    CAS  Google Scholar 

  10. Pelletier CC, Lambert JL, Borchert M (2005) Appl Spectrosc 59:1024–1031

    Article  CAS  Google Scholar 

  11. Frost RL, Kristof J, Rintoul L, Kloprogge JT (2000) Spectrochim Acta A 56:1681–1691

    Article  Google Scholar 

  12. Mathlouthi M, Luu DV (1980) Carbohydr Res 81:203–212

    Article  CAS  Google Scholar 

  13. Chen J, Arnold MA, Small GW (2004) Anal Chem 76:5405–5413

    Article  CAS  Google Scholar 

  14. Eddy CV, Flanigan M, Arnold MA (2003) Appl Spectrosc 57:1230–1235

    Article  CAS  Google Scholar 

  15. Zhang L, Small GW, Arnold MA (2003) Anal Chem 75:5905–5915

    Article  CAS  Google Scholar 

  16. Mattu MJ, Small GW, Arnold MA (1997) Anal Chem 69:4695–4702

    Article  CAS  Google Scholar 

  17. Arnold MA, Burmeister JJ, Small GW (1998) Anal Chem 70:1773–1781

    Article  CAS  Google Scholar 

  18. Amerov AK, Chen J, Arnold MA (2004) Appl Spectrosc 58:1195–1204

    Article  CAS  Google Scholar 

  19. Preston CM, Adams WA (1997) J Phys Chem-Us 83:814–821

    Article  Google Scholar 

  20. Cassanas G, Morssli M, Fabregue E, Bardet L (1991) J Raman Spectrosc 22:409–413

    Article  CAS  Google Scholar 

  21. Hazen KH, Arnold MA, Small GW (1994) Appl Spectrosc 48:477–483

    Article  CAS  Google Scholar 

  22. Jensen PS, Bak J (2002) Appl Spectrosc 56:1600–1606

    Article  CAS  Google Scholar 

  23. Arnold MA, Small GW, Xiang D, Qui J, Murhammer DW (2004) Anal Chem 76:2583–2590

    Article  CAS  Google Scholar 

  24. Lorber A (1986) Anal Chem 58:1167–1172

    Article  CAS  Google Scholar 

  25. Lorber A, Faber K, Kowalski BR (1997) Anal Chem 69:1620–1626

    Article  CAS  Google Scholar 

  26. Berger AJ, Koo TW, Itzkan I, Feld MS (1998) Anal Chem 70:623–627

    Article  CAS  Google Scholar 

  27. Faber NM (1999) Anal Chem 71:557–565

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institute of Diabetes and Digestive and Kidney Diseases (DK-60657). Professor Julie Jessop’s assistance with the Raman spectrometer is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Arnold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, M., Arnold, M.A. Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and Raman spectra. Anal Bioanal Chem 387, 879–888 (2007). https://doi.org/10.1007/s00216-006-1047-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1047-4

Keywords

Navigation