Skip to main content
Log in

Bioluminescent properties of obelin and aequorin with novel coelenterazine analogues

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The main analytical use of Ca2+-regulated photoproteins from luminous coelenterates is for real-time non-invasive visualization of intracellular calcium concentration ([Ca2+]i) dynamics in cells and whole organisms. A limitation of this approach for in vivo deep tissue imaging is the fact that blue light emitted by the photoprotein is highly absorbed by tissue. Seven novel coelenterazine analogues were synthesized and their effects on the bioluminescent properties of recombinant obelin from Obelia longissima and aequorin from Aequorea victoria were evaluated. Only analogues having electron-donating groups (m-OCH3 and m-OH) on the C6 phenol moiety or an extended resonance system at the C8 position (1-naphthyl and α-styryl analogues) showed a significant red shift of light emission. Of these, only the α-styryl analogue displayed a sufficiently high light intensity to allow eventual tissue penetration. The possible suitability of this compound for in vivo assays was corroborated by studies with aequorin which allowed the monitoring of [Ca2+]i dynamics in cultured CHO cells and in hippocampal brain slices. Thus, the α-styryl coelenterazine analogue might be potentially useful for non-invasive, in vivo bioluminescence imaging in deep tissues of small animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BRET:

Bioluminescence Förster resonance energy transfer

CHO cells:

Chinese hamster ovary cells

CTZ:

Coelenterazine

References

  1. Morin JG (1974) In: Muscatine L, Lenhoff HM (eds) Coelenterate biology: reviews and new perspectives. New York, Academic

    Google Scholar 

  2. Vysotski ES, Markova SV, Frank LA (2006) Calcium-regulated photoproteins of marine coelenterates. Mol Biol 40:355–367

    Article  CAS  Google Scholar 

  3. Hastings JW, Gibson QH (1963) Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide. J Biol Chem 238:2537–2554

    CAS  Google Scholar 

  4. Allen DG, Blinks JR, Prendergast FG (1977) Aequorin luminescence: relation of light emission to calcium concentration – a calcium-independent component. Science 195:996–998

    Article  CAS  Google Scholar 

  5. Shimomura O, Johnson FH (1972) Structure of the light-emitting moiety of aequorin. Biochemistry 11:1602–1608

    Article  CAS  Google Scholar 

  6. Cormier MJ, Hori K, Karkhanis YD, Anderson JM, Wampler JE, Morin JG, Hastings JW (1973) Evidence for similar biochemical requirements for bioluminescence among the coelenterates. J Cell Physiol 81:291–297

    Article  CAS  Google Scholar 

  7. Markova SV, Vysotski ES, Blinks JR, Burakova LP, Wang BC, Lee J (2002) Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins. Biochemistry 41:2227–2236

    Article  CAS  Google Scholar 

  8. Head JF, Inouye S, Teranishi K, Shimomura O (2000) The crystal structure of the photoprotein aequorin at 2.3 Å resolution. Nature 405:372–376

    Article  CAS  Google Scholar 

  9. Liu ZJ, Vysotski ES, Chen CJ, Rose JP, Lee J, Wang BC (2000) Structure of the Ca2+-regulated photoprotein obelin at 1.7 Å resolution determined directly from its sulfur substructure. Protein Sci 11:2085–2093

    Article  Google Scholar 

  10. Liu ZJ, Vysotski ES, Deng L, Lee J, Rose J, Wang BC (2003) Atomic resolution structure of obelin: soaking with calcium enhances electron density of the second oxygen atom substituted at the C2-position of coelenterazine. Biochem Biophys Res Commun 311:433–439

    Article  CAS  Google Scholar 

  11. Titushin MS, Feng Y, Stepanyuk GA, Li Y, Markova SV, Golz S, Wang BC, Lee J, Wang J, Vysotski ES, Liu ZJ (2010) NMR-derived topology of a GFP-photoprotein energy transfer complex. J Biol Chem 285:40891–40900

    Article  CAS  Google Scholar 

  12. Deng L, Markova SV, Vysotski ES, Liu ZJ, Lee J, Rose J, Wang BC (2004) Crystal structure of a Ca2+-discharged photoprotein: implications for mechanisms of the calcium trigger and bioluminescence. J Biol Chem 279:33647–33652

    Article  CAS  Google Scholar 

  13. Deng L, Vysotski ES, Markova SV, Liu ZJ, Lee J, Rose J, Wang BC (2005) All three Ca2+-binding loops of photoproteins bind calcium ions: the crystal structures of calcium-loaded apo-aequorin and apo-obelin. Protein Sci 14:663–675

    Article  CAS  Google Scholar 

  14. Liu ZJ, Stepanyuk GA, Vysotski ES, Lee J, Markova SV, Malikova NP, Wang BC (2006) Crystal structure of obelin after Ca2+-triggered bioluminescence suggests neutral coelenteramide as the primary excited state. Proc Natl Acad Sci U S A 103:2570–2575

    Article  CAS  Google Scholar 

  15. Vysotski ES, Liu ZJ, Markova SV, Blinks JR, Deng L, Frank LA, Herko M, Malikova NP, Rose JP, Wang BC, Lee J (2003) Violet bioluminescence and fast kinetics from W92F obelin: structure-based proposals for the bioluminescence triggering and the identification of the emitting species. Biochemistry 42:6013–6024

    Article  CAS  Google Scholar 

  16. Vysotski ES, Lee J (2004) Ca2+-regulated photoproteins: structural insight into the bioluminescence mechanism. Acc Chem Res 37:405–415

    Article  CAS  Google Scholar 

  17. Vysotski ES, Lee J (2007) In: Viviani VR, Ohmiya Y (eds) Luciferases and fluorescent proteins: principles and advances in biotechnology and bioimaging. Transworld Research Network, Kerala

    Google Scholar 

  18. Blinks JR, Wier WG, Hess P, Prendergast FG (1982) Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol 40:1–114

    Article  CAS  Google Scholar 

  19. Pinton P, Rimessi A, Romagnoli A, Prandini A, Rizzuto R (2007) Biosensors for the detection of calcium and pH. Methods Cell Biol 80:297–325

    Article  CAS  Google Scholar 

  20. Eglen RM, Reisine T (2008) Photoproteins: important new tools in drug discovery. Assay Drug Dev Technol 6:659–671

    Article  CAS  Google Scholar 

  21. Ottolini D, Calì T, Brini M (2013) Measurements of Ca2+ concentration with recombinant targeted luminescent probes. Methods Mol Biol 937:273–91

    Article  CAS  Google Scholar 

  22. Webb SE, Rogers KL, Karplus E, Miller AL (2010) The use of aequorins to record and visualize Ca2+ dynamics: from subcellular microdomains to whole organisms. Methods Cell Biol 99:263–300

    Article  CAS  Google Scholar 

  23. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  CAS  Google Scholar 

  24. Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brûlet P (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+reporters at the single-cell level. Proc Natl Acad Sci U S A 97:7260–7265

    Article  CAS  Google Scholar 

  25. Curie T, Rogers KL, Colasante C, Brûlet P (2007) Red-shifted aequorin-based bioluminescent reporters for in vivo imaging of Ca2+ signaling. Mol Imaging 6:30–42

    CAS  Google Scholar 

  26. Bakayan A, Vaquero CF, Picazo F, Llopis J (2011) Red fluorescent protein-aequorin fusions as improved bioluminescent Ca2+ reporters in single cells and mice. PLoS One 6:e19520

    Article  CAS  Google Scholar 

  27. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Singapore

    Book  Google Scholar 

  28. Rogers KL, Picaud S, Roncali E, Boisgard R, Colasante C, Stinnakre J, Tavitian B, Brûlet P (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 3:e974

    Article  Google Scholar 

  29. Martin JR, Rogers KL, Chagneau C, Brûlet P (2007) In vivo bioluminescence imaging of Ca2+signalling in the brain of Drosophila. PLoS One 2:e275

    Article  Google Scholar 

  30. Naumann EA, Kampff AR, Prober DA, Schier AF, Engert F (2010) Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 23:513–520

    Article  Google Scholar 

  31. Shimomura O (2006) Bioluminescence: chemical principles and methods. World Scientific, Singapore

    Book  Google Scholar 

  32. Inouye S, Shimomura O (1997) The use of Renilla luciferase, Oplophorus luciferase, and apoaequorin as bioluminescent reporter protein in the presence of coelenterazine analogues as substrate. Biochem Biophys Res Commun 233:349–353

    Article  CAS  Google Scholar 

  33. Loening AM, Wu AM, Gambhir SS (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4:641–643

    Article  CAS  Google Scholar 

  34. Stepanyuk GA, Unch J, Malikova NP, Markova SV, Lee J, Vysotski ES (2010) Coelenterazine-v ligated to Ca2+-triggered coelenterazine-binding protein is a stable and efficient substrate of the red-shifted mutant of Renilla muelleri luciferase. Anal Bioanal Chem 398:1809–1817

    Article  CAS  Google Scholar 

  35. Illarionov BA, Markova SV, Bondar VS, Vysotski ES, Gitelson JI (1992) Isolation and expression of cDNA coding for photoprotein obelin from hydroid Obelia longissima. Dokl Akad Nauk 326:911–913

    CAS  Google Scholar 

  36. Illarionov BA, Bondar VS, Illarionova VA, Vysotski ES (1995) Sequence of the cDNA encoding the Ca2+-activated photoprotein obelin from the hydroid polyp Obelia longissima. Gene 153:273–274

    Article  CAS  Google Scholar 

  37. Prasher D, McCann RO, Cormier MJ (1985) Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Commun 126:1259–1268

    Article  CAS  Google Scholar 

  38. Adamczyk M, Johnson DD, Mattingly PG, Pan Y, Reddy RE (2001) Synthesis of coelenterazine. Org Prep Proc Int 33:477–485

    Article  CAS  Google Scholar 

  39. Adamczyk M, Akireddy SR, Johnson DD, Mattingly PG, Pan Y, Reddy RE (2003) Synthesis of 3,7-dihydroimidazo[1,2a]pyrazine-3-ones and their chemiluminescent properties. Tetrahedron 59:8129–8142

    Article  CAS  Google Scholar 

  40. Tao Z-F, Li G, Tong Y, Chen Z, Merta P, Kovar P, Zhang H, Rosenberg SH, Sham HL, Sowin TJ, Lin N-H (2007) Synthesis and biological evaluation of 4'-(6,7-disubstituted-2,4-dihydro-indeno[1,2-c]pyrazol-3-yl)-biphenyl-4-ol as potent Chk1 inhibitors. Bioorg Med Chem Lett 17:4308–4315

    Article  CAS  Google Scholar 

  41. Hirano T, Ohmiya Y, Maki S, Niwa H, Ohashi M (1998) Bioluminescent properties of fluorinated semi-synthetic Aequorins. Tetrahedron Lett 39:5541–5544

    Article  CAS  Google Scholar 

  42. Illarionov BA, Frank LA, Illarionova VA, Bondar VS, Vysotski ES, Blinks JR (2000) Recombinant obelin: cloning and expression of cDNA purification, and characterization as a calcium indicator. Methods Enzymol 305:223–249

    Article  CAS  Google Scholar 

  43. Vysotski ES, Liu ZJ, Rose J, Wang BC, Lee J (2001) Preparation and X-ray crystallographic analysis of recombinant obelin crystals diffracting to beyond 1.1 Å. Acta Crystallogr D Biol Crystallogr 57:1919–1921

    Article  CAS  Google Scholar 

  44. Eremeeva EV, Markova SV, Frank LA, Visser AJ, van Berkel WJ, Vysotski ES (2013) Bioluminescent and spectroscopic properties of His-Trp-Tyr triad mutants of obelin and aequorin. Photochem Photobiol Sci 12:1016–1024

    Article  CAS  Google Scholar 

  45. Klabusay M, Blinks JR (1996) Some commonly overlooked properties of calcium buffer systems: a simple method for detecting and correcting stoichiometric imbalance in CaEGTA stock solutions. Cell Calcium 20:227–234

    Article  CAS  Google Scholar 

  46. Rogers KL, Stinnakre J, Agulhon C, Jublot D, Shorte SL, Kremer EJ, Brûlet P (2005) Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters. Eur J Neurosci 21(3):597–610

    Article  Google Scholar 

  47. Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Martin Villalba A, Tronche F, Kellendonk C, Gau D, Kapfhammer J, Otto C, Schmid W, Schütz G (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31:47–54

    Article  CAS  Google Scholar 

  48. Shimomura O, Johnson FH (1970) Calcium binding, quantum yield, and emitting molecule in aequorin bioluminescence. Nature 227:1356–1357

    Article  CAS  Google Scholar 

  49. Shimomura O, Musicki B, Kishi Y, Inouye S (1993) Light-emitting properties of recombinant semi-synthetic aequorins and recombinant fluorescein conjugated aequorin for measuring cellular calcium. Cell Calcium 14:373–378

    Article  CAS  Google Scholar 

  50. Stepanyuk GA, Golz S, Markova SV, Frank LA, Lee J, Vysotski ES (2005) Interchange of aequorin and obelin bioluminescence color is determined by substitution of one active site residue of each photoprotein. FEBS Lett 579:1008–1014

    Article  CAS  Google Scholar 

  51. Shimomura O (1997) Membrane permeability of coelenterazine analogues measured with fish eggs. Biochem J 326:297–298

    CAS  Google Scholar 

  52. Bovolenta S, Foti M, Lohmer S, Corazza S (2007) Development of a Ca2+-activated photoprotein, Photina, and its application to high-throughput screening. J Biomol Screen 12:694–704

    Article  CAS  Google Scholar 

  53. Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca2+ ions in dendritic spines. Neuron 33:439–452

    Article  CAS  Google Scholar 

  54. Shimomura O (1991) Preparation and handling of aequorin solutions for the measurement of cellular Ca2+. Cell Calcium 12:635–643

    Article  CAS  Google Scholar 

  55. Ohmiya Y, Ohashi M, Tsuji FI (1992) Two excited states in aequorin bioluminescence induced by tryptophan modification. FEBS Lett 301:197–201

    Article  CAS  Google Scholar 

  56. Giuliani G, Molinari P, Ferretti G, Cappelli A, Anzini M, Vomero S, Costa T (2012) New red-shifted coelenterazine analogues with an extended electronic conjugation. Tetrahedron Lett 53:5114–5118

    Article  CAS  Google Scholar 

  57. Shimomura O, Musicki B, Kishi Y (1989) Semi-synthetic aequorins with improved sensitivity to Ca2+ ions. Biochem J 261:913–920

    CAS  Google Scholar 

Download references

Acknowledgements

R.G. acknowledges the ICSN for a fellowship. We are grateful for the ANR grant to P.B. and a CNRS Physics, Chemistry and Biology interface grant to R.H.D. and P.B.; N.P.M, L.P.B., and E.S.V. acknowledge the RFBR grant 12-04-00131 and the Program of the Government of Russian Federation “Measures to attract leading scientists to Russian educational institutions” (grant 11.G34.31.0058). P.B. and A.J.B. are indebted to Eric Karplus from Science Wares Inc. for helping with single-photon imaging software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Dodd.

Additional information

Ronan Gealageas, Natalia P. Malikova, and Sandrine Picaud contributed equally to this work.

Philippe Brûlet is deceased.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gealageas, R., Malikova, N.P., Picaud, S. et al. Bioluminescent properties of obelin and aequorin with novel coelenterazine analogues. Anal Bioanal Chem 406, 2695–2707 (2014). https://doi.org/10.1007/s00216-014-7656-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7656-4

Keywords

Navigation