Skip to main content
Log in

Microscale depletion of high abundance proteins in human biofluids using IgY14 immunoaffinity resin: analysis of human plasma and cerebrospinal fluid

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Removal of highly abundant proteins in plasma is often carried out using immunoaffinity depletion to extend the dynamic range of measurements to lower abundance species. While commercial depletion columns are available for this purpose, they generally are not applicable to limited sample quantities (<20 μL) due to low yields stemming from losses caused by nonspecific binding to the column matrix and concentration of large eluent volumes. Additionally, the cost of the depletion media can be prohibitive for larger-scale studies. Modern LC-MS instrumentation provides the sensitivity necessary to scale-down depletion methods with minimal sacrifice to proteome coverage, which makes smaller volume depletion columns desirable for maximizing sample recovery when samples are limited, as well as for reducing the expense of large-scale studies. We characterized the performance of a 346 μL column volume microscale depletion system, using four different flow rates to determine the most effective depletion conditions for ∼6-μL injections of human plasma proteins and then evaluated depletion reproducibility at the optimum flow rate condition. Depletion of plasma using a commercial 10-mL depletion column served as the control. Results showed depletion efficiency of the microscale column increased as flow rate decreased, and that our microdepletion was reproducible. In an initial application, a 600-μL sample of human cerebrospinal fluid (CSF) pooled from multiple sclerosis patients was depleted and then analyzed using reversed phase liquid chromatography-mass spectrometry to demonstrate the utility of the system for this important biofluid where sample quantities are more commonly limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pang JX, Ginanni N, Dongre AR, Hefta SA, Opitek GJ (2002) J Proteome Res 1:161–169

    Article  CAS  Google Scholar 

  2. Hu S, Arellano M, Boontheung P, Wang J, Zhou H, Jiang J, Elashoff D, Wei R, Loo JA, Wong DT (2008) Clin Cancer Res 14:6246–6252

    Article  CAS  Google Scholar 

  3. Jacobs JM, Adkins JN, Qian WJ, Liu T, Shen Y, Camp DG 2nd, Smith RD (2005) J Proteome Res 4:1073–1085

    Article  CAS  Google Scholar 

  4. Kroksveen AC, Opsahl JA, Aye TT, Ulvik RJ, Berven FS (2011) J Proteome 74:371–388

    Article  CAS  Google Scholar 

  5. Hu S, Loo JA, Wong DT (2006) Proteomics 6:6326–6353

    Article  CAS  Google Scholar 

  6. Chen T, Xie G, Wang X, Fan J, Qiu Y, Zheng X, Qi X, Cao Y, Su M, Wang X, Xu LX, Yen Y, Liu P, Jia W (2011) Mol Cell Proteomics 10(M110):004945

    Google Scholar 

  7. Laxman B, Morris DS, Yu J, Siddiqui J, Cao J, Mehra R, Lonigro RJ, Tsodikov A, Wei JT, Tomlins SA, Chinnaiyan AM (2008) Cancer Res 68:645–649

    Article  CAS  Google Scholar 

  8. Shen Y, Moore RJ, Zhao R, Blonder J, Auberry DL, Masselon C, Pasa-Tolić L, Hixson KK, Auberry KJ, Smith RD (2003) Anal Chem 75:3596–3605

    Article  CAS  Google Scholar 

  9. Ahmed N, Rice GE (2005) J Chromatogr B Anal Technol Biomed Life Sci 815:39–50

    Article  CAS  Google Scholar 

  10. Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD (2003) Mol Cell Proteomics 2:1096–1103

    Article  CAS  Google Scholar 

  11. Shores KS, Knapp DR (2007) J Proteome Res 6:3739–3751

    Article  CAS  Google Scholar 

  12. Polaskova V, Kapur A, Khan A, Molloy MP, Baker MS (2010) Electrophoresis 31:471–482

    Article  CAS  Google Scholar 

  13. Yuan X, Desiderio DM (2005) Proteomics 5:541–550

    Article  CAS  Google Scholar 

  14. Boschetti E, Righetti PG (2008) J Proteome 71:255–264

    Article  CAS  Google Scholar 

  15. Ly L, Wasinger VC (2011) Proteomics 11:513–534

    Article  CAS  Google Scholar 

  16. Gong Y, Li X, Yang B, Ying W, Li D, Zhang Y, Dai S, Cai Y, Wang J, He F, Qian X (2006) J Proteome Res 5:1379–1387

    Article  CAS  Google Scholar 

  17. Liu T, Qian WJ, Gritsenko MA, Camp DG 2nd, Monroe ME, Moore RJ, Smith RD (2005) J Proteome Res 4:2070–2080

    Article  CAS  Google Scholar 

  18. Rifai N, Gillette MA, Carr SA (2006) Nat Biotechnol 24:971–983

    Article  CAS  Google Scholar 

  19. Pernemalm M, Lewensohn R, Lehtiö J (2009) Proteomics 9:1420–1427

    Article  CAS  Google Scholar 

  20. Fang X, Huang L, Feitelson JS, Zhang WW (2004) Drug Discov Today Technol I:141–148

    Article  Google Scholar 

  21. Zolotarjova N, Martosella J, Nicol G, Bailey J, Boyes BE, Barrett WC (2005) Proteomics 5:3304–3313

    Article  CAS  Google Scholar 

  22. Huang L, Harvie G, Feitelson JS, Gramatikoff K, Herold DA, Allen DL, Amunngama R, Hagler RA, Pisano MR, Zhang WW, Fang X (2005) Proteomics 5:3314–3328

    Article  CAS  Google Scholar 

  23. Zhou M, Lucas DA, Chan KC, Issaq HJ, Petricoin EF III, Liotta LA, Veenstra TD, Conrads TP (2004) Electrophoresis 25:1289–1298

    Article  CAS  Google Scholar 

  24. Gundry RL, Fu Q, Jelinek CA, Van Eyk JE, Cotter RJ (2007) Proteomics Clin Appl 1:73–88

    Article  CAS  Google Scholar 

  25. Yocum AK, Yu K, Oe T, Blair IA (2005) J Proteome Res 4:1722–1731

    Article  CAS  Google Scholar 

  26. Qian WJ, Kaleta DT, Petritis BO, Jiang H, Liu T, Zhang X, Mottaz HM, Varnum SM, Camp DG 2nd, Huang L, Fang X, Zhang WW, Smith RD (2008) Mol Cell Proteomics 7:1963–1973

    Article  CAS  Google Scholar 

  27. Bandow JE (2010) Proteomics 10:1416–1425

    Article  CAS  Google Scholar 

  28. Wetterhall M, Zuberovic A, Hanrieder J, Bergquist J (2010) J Chromatogr B Anal Technol Biomed Life Sci 878:1519–1530

    Article  CAS  Google Scholar 

  29. Liu T, Qian WJ, Mottaz HM, Gritsenko MA, Angela DN, Moore RJ, Purvine SO, Camp DG 2nd, Smith RD (2006) Mol Cell Proteomics 5:2167–2174

    Article  CAS  Google Scholar 

  30. Corrigan L, Jefferies C, Clive LT, Daly J (2011) Proteomics 11:3415–3419

    Article  CAS  Google Scholar 

  31. Seam N, Gonzales DA, Kern SJ, Hortin GL, Hoehn GT, Suffredini AF (2007) Clin Chem 53:1915–1920

    Article  CAS  Google Scholar 

  32. Schutzer SE, Liu T, Natelson BH, Angel TE, Schepmoes AA, Purvine SO, Hixson KK, Lipton MS, Camp DG, Coyle PK, Smith RD, Bergquist J (2010) PLoS One 5:e10980

    Article  Google Scholar 

  33. Dujmovic I (2011) Mult Scler Int 2011:767083

    Google Scholar 

  34. Brown JN, Ortiz GM, Angel TE, Jacobs JM, Gritsenko M, Chan EY, Purdy DE, Murnane RD, Larsen K, Palermo RE, Shukla AK, Clauss TR, Katze MG, McCune JM, Smith RD (2012) Mol Cell Proteomics 11:605–618

    Article  CAS  Google Scholar 

  35. Brown RN, Romine MF, Schepmoes AA, Smith RD, Lipton MS (2010) J Proteome Res 9:4454–4463

    Article  CAS  Google Scholar 

  36. Cao L, Bryant DA, Schepmoes AA, Vogl K, Smith RD, Lipton MS, Callister SJ (2012) Photosynth Res 110:153–168

    Article  CAS  Google Scholar 

  37. Kim S, Gupta N, Pevzner PA (2008) J Proteome Res 7:3354–3363

    Article  CAS  Google Scholar 

  38. Piehowski PD, Petyuk VA, Sandoval JD, Burnum KE, Kiebel GR, Monroe ME, Anderson GA, Camp DG 2nd, Smith RD (2013) Proteomics 13:766–770

    Article  CAS  Google Scholar 

  39. Liu H, Sadygov RG, Yates JR 3rd (2004) Anal Chem 76:4193–4201

    Article  CAS  Google Scholar 

  40. Shuford CM, Hawkridge AM, Burnett JC Jr, Muddiman DC (2010) Anal Chem 82:10179–10185

    Article  CAS  Google Scholar 

  41. Borg J, Campos A, Diema C, Omeñaca N, de Oliveira E, Guinovart J, Vilaseca M (2011) Clin Proteomics 8:6

    Article  CAS  Google Scholar 

  42. Tu C, Rudnick PA, Martinez MY, Cheek KL, Stein SE, Slebos RJ, Liebler DC (2010) J Proteome Res 9:4982–4991

    Article  CAS  Google Scholar 

  43. Yue G, Luo Q, Zhang J, Wu SL, Karger BL (2007) Anal Chem 79:938–946

    Article  CAS  Google Scholar 

  44. Qian WJ, Liu T, Petyuk VA, Gritsenko MA, Petritis BO, Polpitiya AD, Kaushal A, Xiao W, Finnerty CC, Jeschke MG, Jaitly N, Monroe ME, Moore RJ, Moldawer LL, Davis RW, Tompkins RG, Herndon DN, Camp DG, Smith RD (2009) J Proteome Res 8:290–299

    Article  CAS  Google Scholar 

  45. Liebler DC, Ham AJ (2009) Nat Methods 6:785, author reply 785–786

    Article  CAS  Google Scholar 

  46. Ogata Y, Charlesworth MC, Higgins L, Keegan BM, Vernino S, Muddiman DC (2007) Proteomics 7:3726–3734

    Article  CAS  Google Scholar 

  47. Stoop MP, Rosenling T, Attali A, Meesters RJ, Stingl C, Dekker LJ, van Aken H, Suidgeest E, Hintzen RQ, Tuinstra T, van Gool A, Luider TM, Bischoff RM (2012) J Proteome Res 11:4315–4325

    Article  CAS  Google Scholar 

  48. Slysz GW, Lewis DF, Schriemer DC (2006) J Proteome Res 5:1959–1966

    Article  CAS  Google Scholar 

  49. Massolini G, Calleri E (2005) J Sep Sci 28:7–21

    Article  CAS  Google Scholar 

  50. Zougman A, Pilch B, Podtelejnikov A, Kiehntopf M, Schnabel C, Kumar C, Mann M (2008) J Proteome Res 7:386–399

    Article  CAS  Google Scholar 

  51. Mouton-Barbosa E, Roux-Dalvai F, Bouyssié D, Berger F, Schmidt E, Righetti PG, Guerrier L, Boschetti E, Burlet-Schiltz O, Monsarrat B, Gonzalez de Peredo A (2010) Mol Cell Proteomics 9:1006–1021

    Article  CAS  Google Scholar 

  52. Pan S, Zhu D, Quinn JF, Peskind ER, Montine TJ, Lin B, Goodlett DR, Taylor G, Eng J, Zhang J (2007) Proteomics 7:469–473

    Article  CAS  Google Scholar 

  53. Bora A, Anderson C, Bachani M, Nath A, Cotter RJ (2012) J Proteome Res 11:3143–3149

    Article  CAS  Google Scholar 

  54. Cunningham R, Jany P, Messing A, Li L (2013) J Proteome Res 12:719–728

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the National Center for Research Resources (5 P41 RR018522-10) and the National Institute of General Medical Sciences (8 P41 GM103493-10) from the National Institutes of Health as well as the Department of Energy Office of Biological and Environmental Research Genome Sciences Program under the Pan-omics project. Work was performed in the Environmental Molecular Science Laboratory, a U.S. Department of Energy (DOE) national scientific user facility at Pacific Northwest National Laboratory (PNNL) in Richland, WA. Battelle operates PNNL for the DOE under contract DE-AC05-76RLO01830. We appreciate the favor from Jonas Bergquist at Uppsala University (Department of Chemistry-Biomedical Center, Analytical Chemistry and SciLife Lab, Uppsala, Sweden) for the donation of CSF sample.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seok-Won Hyung or Richard D. Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 65 kb)

ESM 2

(PDF 23.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyung, SW., Piehowski, P.D., Moore, R.J. et al. Microscale depletion of high abundance proteins in human biofluids using IgY14 immunoaffinity resin: analysis of human plasma and cerebrospinal fluid. Anal Bioanal Chem 406, 7117–7125 (2014). https://doi.org/10.1007/s00216-014-8058-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8058-3

Keywords

Navigation